
The recommended architecture
to analyse IoT Data for asset

management

Bachelor Thesis

Submitted by Bader Ammoun

In fulfillment of the requirements for the degree Bachelor of
Science in Informatics To be awarded by The Fontys Hogeschool

Techniek en Logistiek

Sittard July 6, 2020

Fontys University of Applied Sciences
School of Technology and Logistics
Post Office Box 141, 5900 AC Venlo, Netherlands

Type of report: research

Student name: Bader Ammoun
Student number: 3437310
Study: Software Engineering
Period: 10-2-2020 To 10-7-2020

Company name: BCT
Address: Hub Dassenplein 3
Postal code + City: 6130 AB Sittard
Country: Netherlands
Telephone: +31(0)46 442 45 45

Company supervisor: Math.Huntjes
Company supervisor: Laurens.van der Blom
Supervising Lecturer : Frank.Gennip
External commissioner: Th.Dorssers

Company Confidential: Yes

Number of words: 9990

i

STATEMENT OF AUTHENTICITY
Issued by the FHTenL Examination Board, September 2017

I, the undersigned, hereby certify that I have compiled and written this
document and the underlying work / pieces of work without assistance from
anyone except the specifically assigned academic supervisor. This work is solely
my own, and I am solely responsible for the content, organization, and making
of this document and the underlying work / pieces of work.

I hereby acknowledge that I have read the instructions for preparation and
submission of documents / pieces of work provided by my course / my academic
institution, and I understand that this document and the underlying pieces of
work will not be accepted for evaluation or for the award of academic credits
if it is determined that they have not been prepared in compliance with those
instructions and this statement of authenticity.

I further certify that I did not commit plagiarism, did neither take over nor
paraphrase (digital or printed, translated or original) material (e.g. ideas, data,
pieces of text, figures, diagrams, tables, recordings, videos, code, ...) produced
by others without correct and complete citation and correct and complete ref-
erence of the source(s). I understand that this document and the underlying
work / pieces of work will not be accepted for evaluation or for the award of
academic credits if it is determined that they embody plagiarism.

Name: Bader Ammoun

Student number: 3437310

Place/Date: Sittard July 6, 2020

Signature:

ii

Contents

1 Summary 1

2 Introduction 1
2.1 Background . 1
2.2 Company description . 1
2.3 Problem Statement . 1
2.4 Project objectives . 2
2.5 Air quality use case . 2
2.6 Overview . 3

3 Analysis and Requirements 4
3.1 Methods . 4
3.2 Use characteristics . 4
3.3 Functional Requirement . 4
3.4 Use Case Diagram . 5
3.5 Non-Functional Requirements . 5

4 Development Process 7

5 Architecture 7
5.1 Logical views(Micro-services) . 7

5.1.1 Warehouse(Data Mart) 8
5.1.2 Dashboard . 11
5.1.3 Data transformation . 11
5.1.4 OMS (Object Management system) 11
5.1.5 Cloud gateway . 11
5.1.6 IoT device . 12

5.2 Implementation view . 16
5.2.1 Subsystems structure . 16
5.2.2 Communications between subsystem 25

6 Threats modeling 30
6.1 Threat type . 30
6.2 Potential threats and mitigation 30

6.2.1 Threats between cloud and IoT device 31
6.2.2 Threats between Cloud,OMS,Data Transformation 33

7 Prototype(Proof of Concept) 34
7.1 Mocking OMS . 34
7.2 IoT device . 37
7.3 Cloud gateway . 37
7.4 Deployment view . 38

iii

8 Implementation 39
8.1 IoT device . 39
8.2 Cloud Gateway . 39
8.3 OMS . 39
8.4 Data Transformation . 40
8.5 Security . 42

9 Testing and Validation 44
9.1 Test Strategy . 44

9.1.1 Feature to be tested . 44
9.1.2 Feature not to be tested 45

9.2 Test type . 45
9.3 Test Objective . 45
9.4 Test Criteria . 45

9.4.1 Failure Criteria . 45
9.4.2 Passed Criteria . 45

9.5 Tools . 46
9.6 Test Environment . 46
9.7 Test cases . 47

9.7.1 FT3 . 48
9.7.2 FT2 . 49
9.7.3 FT1 . 50
9.7.4 NFT1 . 53
9.7.5 NFT2 . 53
9.7.6 NFT3 . 54

10 Conclusion 55

List of Figures

1 project objective . 2
2 Use case Diagram . 5
3 Reference Architecture . 8
4 star-schema-example Myers et al. (2019) 10
5 Snowflake-schema-example Hernandez (2018) 10
6 Network Connectivity Dunko et al. (2017) 14
7 Container Diagram . 17
8 star schema . 20
9 Data Transformation Component 21
10 Time window (cofluent 2019) . 23
11 Data flow diagram . 24
12 Analytic model class diagram . 25
13 publish-subscriber (Goswami 2018) 26
14 Kafka-Consumer-Groups (Goswami 2018) 27
15 Sequence Diagram . 29

iv

16 OMS Component Diagram . 35
17 Domain model class diagram . 36
18 ER diagram . 37
19 Deployment diagram . 38
20 Test Environment . 46

List of Tables

1 UC1 User Case . 4
2 UC2 User Case . 4
3 Performance Requirement . 5
4 Availability Requirement . 6
5 Security Requirement . 6
6 scalability Requirement . 6
7 Iterative plan . 7
8 Cellular comparison Dunko et al. (2017) 12
9 WiFi comparison Dunko et al. (2017) 13
10 Bluetooth comparison Dunko et al. (2017) 13
11 Zigbee comparison Dunko et al. (2017) 14
12 Mqtt comparison Sethi & Smruti (2017) 15
13 Batch comparison (Balkenende 2018) 19
14 Steaming comparison (Balkenende 2018) 19
15 Region-1- spoof-threat . 31
16 Region-1- Disclosure-threat . 31
17 Region-1- Repudiation-threat . 32
18 Region-1- Elevation of Privileges-threat 32
19 Region-2- Tampering-threat . 33
20 Region-2- Spoofing-threat . 33
21 Region-2- Information Disclosure-threat 33
22 Feature to be tested . 44
23 test tools . 46
24 Test Case FT3 . 48
25 Test Case FT2 part1 . 49
26 Test Case FT2 part2 . 50
27 Test Case FT1 . 52
28 Test Case NFT1 . 53
29 Test Case NFT2 . 53
30 Performance metrics with 1 IoT device 54
31 Performance metrics with 3 IoT 54
32 Performance metrics With 4IoT device 54

v

1 Summary

This report investigates the architecture of a system that provides solution to
the challenges of analyzing an enormous amount of IoT data. The investigation
is based on research, articles, and books, which deal with various relevant as-
pects, in addition, to the comparisons between options and the selection of the
most appropriate one. Further it sets up the testing framework to verify if the
recommended architecture fulfills the requirements by determining what needs
to be tested and how to conduct tests. Finally, it evaluates the results and what
can be done in the future.

2 Introduction

This chapter starts with discussing what this report is intended for. Then it
moves on giving a short introduction about the company for which the project
has been working on, in addition to the problem that the company tries to solve.
Then it concludes with a review of the subsequent parts of this report that were
discussed as part of tackling the problem to reach to the solution.

2.1 Background

This thesis is intended to obtain a bachelor’s degree in software engineering from
Fontys university of applied sciences

2.2 Company description

BCT is a family company, founded in 1985, and currently has a settlement
in Sittard. Through innovation, high quality and excellent services BCT has
grown into a company with at least 170 employees and a revenue of 13 mil-
lion Euro. BCT has a strong position in the Dutch (semi-)government market.
BCT’s customers are knowledge intensive organizations who require accuracy,
completeness, reliability and availability of information. BCT guides customers
with the implementation of integral information management. BCT has suc-
cessfully assisted at least 700 customers to make their ambitions in information
transition come true. BCT analyses, advises and offers the correct software so-
lutions. The customer’s organization is always the heart of an implementation
by BCT, not the software systems involved. This is due to the fact that every
organization is different and information management is always specific to the
organization.

2.3 Problem Statement

Thanks to the IoT technology, it has become convenient to observe and convey
the physical changes in the assets to a digital platform. The digital platform can
track changes with these assets and evaluate the current situation depending on
the current data. Meanwhile, keeping the historical data is useful for business

1

intelligence reports meaning, it may reveal hidden pattern and correlations be-
tween different environmental factors that can influence the asset. Accordingly,
investing in historical data has become essential for most companies that invest
in the management asset market to stay in the competition. In contrast, the
failure to take advantage of this data inevitably leads to the company losing its
market. However, investing these enormous amounts of data encompass many
challenges. These challenges concern mainly on transferring, processing, storing,
and finally extracting the beneficial information to observe the trends.

2.4 Project objectives

The main objective of this project is to conduct research about what is a rec-
ommended software architecture that can adders challenges that are stated in
the problem statement.

Figure 1: project objective

2.5 Air quality use case

Addressing these challenges needs to work on a concrete use case. The air
quality use case uses many IoT devices to produce a large amount of data
which, makes it a good choice. The air quality around and within buildings and
structures is known as indoor air quality. Poor indoor air quality can irritate the
employee’s eyes, nose, and throat, or can result in fatigue, nausea, or illness. The
health effects of these symptoms can affect the employee’s well-being and lead

2

to poor work performance and productivity. On the other hand, the employer
is responsible for ensuring a safe and healthy work environment. To keep the
indoor air healthy, it is vital to know the level of pollution factors and how
they change over time. The aim of the air quality project in the high-level
overview is to distribute a group of sensors throughout the employee’s rooms to
measure the real-time level for temperature, and humidity, then Storing data
in the management system before consolidated it in a warehouse for analysis
and visualization. This process helps the facility manager to find out different
trends then take appropriate action depending on the data.

2.6 Overview

Here is a list of chapters and a summary of what has been discussed in each
them

• Analysis and Requirement Describes how the requirements were elicita-
tion, And arrived at the specified requirements.

• Development Process Describes the development process that was followed
to achieve the stated objectives.

• Architecture describes the architectural design model with the following
strategy. It is reviewing the literature, articles, books in different areas
that are related to the context of this project. It is Making a comparison
of different approaches then, Choose which one is fit according to the
requirements of the project.

• Threats modeling reviews the potential risks and how to mitigate them.

• Prototype discusses the assumptions that would simplify some of the so-
lutions to demonstrate the concept of the architecture.

• Implantation discuss the reasons why the specific programming language,
development tools, and the implementation platform were chosen.

• Test and Validation Describe the test strategy and how to conduct the
test to fulfill the requirements

• Conclusion the problem was summarized besides to what has been achieved,
and prospect for future work.

3

3 Analysis and Requirements

This chapter explains briefly how the functional requirements have been gath-
ered, and Then it moves to review them alongside to the user characteristics
and non-functional requirements

3.1 Methods

The methods that were used to elicit the requirements are arranging interviews
with the facility manager and using questionnaires with multi choices as feed-
back to ensure that the requirements were understood.

3.2 Use characteristics

The facility manager who wants to maintain healthy air quality and act properly
in a timely manner for any problems that may occur in this context.

3.3 Functional Requirement

Name Visualize the historical data

ID UC1

Priority Must have

Description
The Facility manager wants to visualize the historical
data to have insight that helps him to arrange an
appropriate action for a particular case.

Table 1: UC1 User Case

Name Air Conditioner Maintenance’s Notification

ID UC2

Priority May have

Description

The purpose of Air Conditioner Maintenance Notifi-
cation is to start using conditional maintenance in-
stead of scheduled maintenance, which in it turns
reduces the costs.

Table 2: UC2 User Case

4

3.4 Use Case Diagram

Figure 2: Use case Diagram

3.5 Non-Functional Requirements

Following is talking about the non-functional requirements, Describing the es-
sential attributes in this system.

Performance

ID NF1

Priority Must have

Purposes IoT device produces a significant amount of data. fetch-
ing them and processing them should be done with high
performance.

Table 3: Performance Requirement

5

Availability

ID NF2

Priority Must have

Purposes The IoT devices produce the data continuously. Thus, the
system should be functional all day.

Table 4: Availability Requirement

Security

ID NF3

Priority Must have

Purposes The system should allow only an authorized user to get
access to the dashboard. And secure data between sensors
and the system.

Table 5: Security Requirement

Scalability

ID NF4

Priority Must have

Purposes Many IoT devices connect to the system. adding more de-
vices in the future is possible thus, adding the device to the
system should not influence the performance.

Table 6: scalability Requirement

6

4 Development Process

The iterative framework has been followed as the development process. The sec-

IterateNo Deliverable

1 Visualizing historical data

2
Air conditioner maintenance no-
tification

Table 7: Iterative plan

ond iterate will be implemented as part of the project’s future. The first iterate
is the most important one, and by achieving it, all important and fundamental
challenges will be be addressed.

5 Architecture

This chapter provides a comprehensive architectural overview of the system,
using a number of different architectural views to depict various aspects of
the system. It is intended to capture and convey the significant architectural
decisions which have been made on the system. The architecture should meet all
functional non-functional requirements. However, scalability and availability are
essential pillars to the quality of the system; thus, the solution should consist of
many subsystems, and every subsystem should be built as discrete services that
are independently deployable, and able to scale independently. These attributes
enable greater scale, more flexibility in updating individual subsystems, and
provide the flexibility to choose appropriate technology on a per subsystem
basis. Additionally, those subsystems should support fault tolerance principle
in case one service is down for some reason there is another instance of this
service that can take its role and let the whole system continue to operate.
How the system‘s architecture will achieve scalability, and availability will be
illustrated in the upcoming sections. However, regarding the security, there is a
chapter discussing it besides, to the test and validation issueRichardson (2019).
The chapter starts with review the logical view of the system, and then it moves
to provide an overview of the internal implantation for every micros-service and
how they communicate.

5.1 Logical views(Micro-services)

This subsection explains every service individually in very high level abstrac-
tion.It discuss the reasons for its presence in the context of functional and non-
functional requirements.

7

Figure 3: Reference Architecture

5.1.1 Warehouse(Data Mart)

Let’s take a closer look at the UC1 case: visualizing the historical data. this
could encompass the following:

1. The facility manager wants to find out the trends of fact(Temperature,
Humidity, etc.) in one room during a specific time window.

2. The facility manager wants to know the total value for fact on the floor
or building.

As we can see, there are unlimited possibilities for the reports that the facility
manager wants. And all of them are essentially the same, but the difference is in
slicing and dicing the values depending on the time, floor, and the nature of the
fact(temperature, humidity). Apart from that, let’s take a look at the definition
of Business intelligence (BI). According to Marky Lk the definition (RADACAT-
Team 2016) ”leverages software and services to transform data into actionable
insights that inform an organization’s business decisions ”. Which, exactly what

8

we have discussed previously and according to him ”the Transactional databases
built for CRUD operations (Create, Retrieve, Update, Delete rows). Because of
this single purpose, transactional databases are built in a Normalized way, to
reduce redundancy and increase the consistency of the data, In fact, building a
data model for BI systems needs to be avoided. This model works perfectly for
transactional databases (when there are systems and operators do data entry
and modifications). However, this model is not good for a BI system. There
are several reasons for that, here are two most important reasons; The model is
hard to understand for a Report User. Too many tables and many relationships
between tables make a reporting query (that might use 20 of these tables at
once) very slow and not efficient” . Accordingly, there is a need for a different
type of Transactional database, which is called a data warehouse. There are
several types of schema(”the discussion about them takes place later on in this
section”). But, apart from that, what is worth mentioning in this regard is,
the needing for the operational database is still vital as long as there is live
transaction coming back and forth to the system. Here the notion of data
transformation emerges, which is nothing more than the process of converting
operational data into one of the warehouse schemes that are suitable for the
business intelligence report. Before diving into the type schemes discussion, It
is important to grasp the two important concepts of the warehouse world, and
their responsibilities (RADACAT-Team 2016)

• “A Fact table is a table that keeps numeric data that might be aggregated
in the reporting visualizations”.

• “A Dimension table is a table that keeps descriptive information that can
slice and dice the data of the fact table.

now let’s see the type of schemes

• Star schema : Central table whose primary key is compound, i.e., consist-
ing of multiple attributes. Each one of these attributes is a foreign key
to one of the remaining tables. Such a foreign key dependency exists for
each one of these tables, while there are no other foreign keys anywhere
in the schema. (In the above, without loss of generality, the assumption is
made that all these other tables have simple primary keys. This is usually
the case in almost all practical situations, as for efficiency, these keys are
typically generated surrogate keys.)A star schema has one “central” table
whose primary key is compound, i.e., consisting of multiple attributes.
Each one of these attributes is a foreign key to one of the remaining ta-
bles. Such a foreign key dependency exists for each one of these tables,
while there are no other foreign keys anywhere in the schema. (In the
above, without loss of generality, the assumption is made that all these
other tables have simple primary keys. This is usually the case in almost
all practical situations, as for efficiency, these keys are typically generated
surrogate keys.Chaudhuri & Dayal (1997)

• Snowflake : The snowflake schema is a variant of the star schema. Here,
the centralized fact table is connected to multiple dimensions. In the

9

snowflake schema, dimensions are present in a normalized form in multiple
related tables. The snowflake structure materializes when the dimensions
of a star schema are detailed and highly structured, having several levels
of relationship, and the child tables have multiple parent tables. The
snowflake effect affects only the dimension tables and does not affect the
fact tables.Chaudhuri & Dayal (1997)

Figure 4: star-schema-example Myers et al. (2019)

In conclusion, In any business intelligence project, there are Operational database
to perform crud operations and A warehouse which is nothing else than the re-
lational database but with a different schema. When modeling this schema, it
should be borne in mind that the purpose is to slice and dice the data depending
on many descriptive properties. Later on, This scheme will be used by Busi-
ness intelligence report tools. The implementation view section discusses the
implementation of the air quality’s star schema.

Figure 5: Snowflake-schema-example Hernandez (2018)

10

5.1.2 Dashboard

It is a component of every BI software solution. The main task is to allow
users to receive instant visualization of their preferred BI-specific operations,
eliminating requirements for manually executed queries or processes. Moreover,
a BI dashboard’s appearance and interface may be customized for desktop,
mobile, or Web/cloud users. Building a dashboard for business intelligence
from scratch is cumbersome, costly, and most likely, the outcome will be not
flexible for the business user’s needs, especially there are many tools available
in the market. Reviewing and comparing them is out of the scope of this thesis.
However, the power BI desktop from Microsoft has been chosen as a visual tool
because it works in grate compatibility with the warehouse database. All what
it needs is the scheme that has been chosen in the warehouse section.

5.1.3 Data transformation

Data transformation can increase the efficiency of analytic and business pro-
cesses and enable better data-driven decision-making. However, the data trans-
formation concerns how to convert operational data to an analysis model(star
or snow flow schema). Most likely, the converting process encompasses the
following Filtering, aggregation, and summarization.

5.1.4 OMS (Object Management system)

It stands for Object Management System. It’s the implementation of a system
that allows modeling any real-world object (either physical or abstract) as a
digital object. That makes it possible to gather data about these objects, such
as buildings, rooms, and so on, in our context, then check if the buildings compile
with the governance roles in a different aspect. Surely this data is persisted in
the operation database.

5.1.5 Cloud gateway

The sensors are mentioned in the last paragraph. However, getting information
securely from sensors and managing them is a tough, not easy job. So heading
to the cloud is the best option in this regard. According to Microsoft, the cloud
gateway “is A cloud gateway that enables remote communication to and from
devices or edge devices, which potentially reside at several different sites. A
cloud gateway will either be reachable over the public Internet, or a network
virtualization overlay (VPN), or private network connections into Azure data-
centers, to insulate the cloud gateway and all of its attached devices or edge
devices from other network traffic. It generally manages all aspects of commu-
nication, including transport-protocol-level connection management, protection
of the communication path, device authentication, and authorization toward the
system. It enforces connection and throughput quotas and collects data used for
billing, diagnostics, and other monitoring tasks. The data flow from the device

11

through the cloud gateway is executed through one or multiple application-level
messaging Protocols.microsoft (2018)

5.1.6 IoT device

It interacts with the physical world; it senses physical parameters, which in
our case are (temperature, Humidity) and sends it securely to the IoT cloud
gateway. The following discusses the type of network and the protocols in the
IoT world Setting up the IoT network can be divided into two distinct parts:

• Part concerns with the physical and data link layer.

• Part concerns with the application layer.

physical and data link layer

1. Cellular: This kind of network is distributed through areas called ”cells”.
One fixed-location transceiver serves at least one cell. The cell uses the
transceiver to transmit voice, data, and other types of content. Usually,
the cell uses different frequency form its neighbor to prevent the interfer-
ence.Dunko et al. (2017)

Advantages Disadvantages

• Connect anywhere, anytime.

• Low power.

• Penetrate solid barriers.

• Secure.

• Ip-driven connection

• Cellular carriers infrastructure is
costly

• Cellular carriers needs a specific
skills and knowledge. In most
cases, depending on the third
party to operate and maintain the
network, is the best choice.

Table 8: Cellular comparison Dunko et al. (2017)

2. WiFi: WiFi is capable of connecting to the network with high speed and
without wires. It uses radio frequencies to send data between devices. It
bases on the IEEE 802.11 family of standards, which are used for local
area networking of devices and the Internet access.Dunko et al. (2017)

12

Advantages Disadvantages

• It does not need recurring cost.

• low cost.

• No bandwidth restriction.

• Low latency Than Cellular.

• Ip-driven connection.

• Maintenance and operation of net-
work are not costly.

• Space limitation.

• More Power consumption.

• Does not penetrate solid barriers

• Less secure than cellular.

• The connections between devices
and central data center are fully
dependent on the router’s connec-
tion to the Internet.

Table 9: WiFi comparison Dunko et al. (2017)

3. Bluetooth: Bluetooth exchanges data between devices within a short dis-
tance. it uses short-wavelength radio waves from 2.400 to 2.485 GHz and
building personal area networks (PANs).Dunko et al. (2017)

Advantages Disadvantages

• Low power consumption.

• Inexpensive.

• Space limitation.

• None Ip driven connection.

• Interference with other device.

• Low security.

Table 10: Bluetooth comparison Dunko et al. (2017)

4. Zigbee ZigBee is an excellent choice for creating personal area networks
with small, low-power digital radios. These networks, such as for home
automation, medical device data collection, and other low-power low-
bandwidth needs, designed for small scale projects which need wireless
connection. Zigbee is IEEE 802.15.4-based specification .Dunko et al.
(2017)

13

Advantages Disadvantages

• Low power consumption.

• Inexpensive.

• Space limitation.

• None Ip driven connection.

• Low bandwidth.

• Low security.

Table 11: Zigbee comparison Dunko et al. (2017)

The following clarify the correlation between speed and distance in the different
type of IoT network

Figure 6: Network Connectivity Dunko et al. (2017)

14

Protocol Application

1. Mqtt: MQTT is one of the most commonly used protocols in IoT projects.
It stands for Message Queuing Telemetry Transport. In addition, it is de-
signed as a lightweight messaging protocol that uses publish/subscribe
operations to exchange data between clients and the server. Furthermore,
its small size, low power usage, minimized data packets and ease of im-
plementation make the protocol ideal for the “machine-to-machine” or
“Internet of Things” world.Sethi & Smruti (2017)

Advantages Disadvantages

• It’s a lightweight protocol.
So, it’s easy to implement
in software and fast in data
transmission..

• Low power usage. As a re-
sult, it saves the connected
device’s battery.

• It’s real time! That’s specif-
ically what makes it perfect
for IoT applications.

• MQTT provides no support
for labelling messages with
types or other metadata to
help clients understand it..

Table 12: Mqtt comparison Sethi & Smruti (2017)

2. CoAp:CoAp is a Internet Application Protocol for constrained devices.
It allows those constrained devices to communicate with the larger node.
CoAP is designed for devices to consume less power and send data to
general node on the internet.Sethi & Smruti (2017)
The main differences between CoAP and Maqtt are.

• The first aspect to notice is the different paradigm used. MQTT uses
a publisher-subscriber while CoAP uses a request-response paradigm.

• MQTT uses a central broker to dispatch messages coming from the
publisher to the clients. CoAP is essentially a one-to-one protocol
very similar to the HTTP protocol.

• Moreover, MQTT is an event-oriented protocol while CoAP is more
suitable for state transfer.

3. HTTP HTTP is not suitable in resource constrained environments because

• Slow: because it uses bigger data packets to communicate with the
server.

15

• Overhead: HTTP request opens and closes the connection at each
request.

• Power consuming: since it takes a longer time and more data packets,
therefore it uses much power.Sethi & Smruti (2017)

5.2 Implementation view

Before going into details, it should be noted that the c4 model has been adopted
to be used as a visualization tools to depict the system architecture for many
reasons:

• It has the high descriptive ability by showing a 4 level overview, starting
with a high-level overview of the system then it goes deeper and deeper

• It can capture the static and dynamic parts of the system.Brown (2019)

• Architects of the BCT use it to document the systems, and besides, they
use it as an illustration tool in the meetings and their blueprint.

The c2 level shows the system at a high-level overview, including all the sub-
systems and the connection protocols among them. Moreover, the figure shows
some services that were not mentioned in architecture reference but are essential
to some subsystems for performing their tasks.

5.2.1 Subsystems structure

This section explains the implementation of each micro-service individually, and
How does it work internally. The powerful BI desktop will be used as a busi-
ness intelligence report tool, and The Azure cloud platform will be used as a
cloud gateway. The implementation chapter justifies the reasons for choosing
them. However, this section focus is on how the data will be extracted, brought,
consolidated, and transferred to the star model.

1. IoT device
Every room has its instance, and it senses the (temperature, Humidity)
on a minute basis and sends its value to the gateway, Only if it detects a
change in value from the last measurement, the repeated data is avoided to
be sent. In the subsection logical view, the different types of IoT networks
and IoT protocol applications were reviewed; thus, let’s choose what the
most appropriate choices for the project are.

• WiFi
The project will be implemented inside the building, which leads to
the exclusion of the cellular option. On the other hand, Being the
Zigbee does not IP-driven network puts it off the list; thus, The
perfect fit is wifi, Especially the project is inside a building.

16

Figure 7: Container Diagram

• MQTT
MQTT and Coap both of them are perfect for any IoT project. But
the coap is stateless application protocol like HTTP. Consequently,
the data transfer process will be somewhat static, and the connec-
tion is one-directional. All the factors may affect the system and its
effectiveness in real-time. Therefore the MQTT is a good choice.

2. OMS
Although OMS is a part of the reference architecture, Its design and im-
plementation are being carried out by BCT. However, since it is in the
development phases and not available yet through the internship, the chap-
ter proof of concept reviews its internal implementation according to the
author’s perspective.

3. Data Log Management System
Before goes into details about the need for log, let’s find out the two con-
cepts: state mutation and mutable event by concrete example related to
the context of the project. IoT device produces data consistently. But not

17

all services in the system interest in all this data, for example, some ser-
vices like OMS is interested only with the last current record or maybe on
other records to perform its business logic. Once the IoT device produces
new facts, the OMS will update the mapped record on its database. An-
other service like data transformation is interested only on the aggregation
of values within a specific time window, as we will see later. In conclusion,
all rows of data need to be stored somewhere, and later any service can
fetch the data that it is interested in. This raw data is a mutable event,
whereas, the OMS uses a state mutation to update the record. Coming
back to storing the raw data. Surely, storing it in relation database could
be the simplest solution, but it is so limited in terms of scalability. For
more clarification, let assume that there are two instances of data trans-
formation service that consume data from a relational database in this
scenario; maintaining the consistency of data without repeating the same
data in two services becomes a nightmare. Alternatively, store all records
in a fixed order, and apply them in that fixed order to the various places
they need to go. Whenever any IoT device writes a new data, this data
will be appended to the end of a sequence of records. That sequence
is totally ordered, it’s append-only (never modify existing records, only
add new records at the end), and it’s persistent (we store it durably on
disk). Structure the data in this way simplifies the consistency of the data
in different services in the system. In conclusion, both log and relation
database is similar in terms of purpose, which is persisting the data. But
both of them use a different structure to store data. This structure will
determine later how to query the data. Using a log provides an opportu-
nity for any service in the system to read and write data at a frequency
that suits its business logic. Any changes in requirements, whether on
the service level or on the system level like adding new features, do not
need any changes in the architecture meaning, the architecture is extend-
able, not modifiable.Kleppmann (2016) Now that the notion of the log
has been discussed beside the reasons for using it, it is time to review the
mechanism of Fetching data from log to the data transformation service:

(a) Batch:”A batch is a collection of data points that have been grouped
together within a specific time interval. Another term often used for
this is a window of data(Balkenende 2018)

(b) Stream: ”Streaming processing deals with continuous data and is key
to turning big data into fast data”.(Balkenende 2018)

18

Batch Advantages Batch Disadvantages

• Batch Processing is a good choice
for processing large volumes of
data/transaction.

• The processing of data can be
done independently. at a desired
designated time.

• carrying out the process using
batches brings to the company the
cost efficiency.

• good audit trail.

• The delay between the collection
of data and getting the result after
the batch process.

• In the batch processing the data is
out of date.

• one-time process can be very slow.

Table 13: Batch comparison (Balkenende 2018)

Streaming Advantages Streaming Disadvantages

• carrying out the real-time process-
ing brings instantly response.

• In real-time processing, informa-
tion is always up to date.

• By using streaming the organiza-
tion gains insights from the data
and detect the hidden patterns by
machine without humane interfer-
ence.

• Real-Time processing is very com-
plex and expensive processing.

Table 14: Steaming comparison (Balkenende 2018)

It is time to put this discussion in the project context and choose which
method is the best fit for the requirements. Whether Applying the batch
or streaming mechanisms does not add any extra functions to any mi-
croservice in the system. All the complexities are managed by the log
management system. These complexities encompass, delivering data to
the interested service at the desired frequency and ensure the consistency
of the data. In conclusion, it can be said that the streaming can do what
the batch does, but the ver versa is not correct, on the other hand, the sec-
ond requirement(UC2) needs to be done in real-time thus, the streaming
option is the best fit for the project requirements.

19

4. Data warehouse
In the logical views section, the warehouse was indicated now, let’s see
how the model that meets the user requirements is built. first, let’s start
with the dimension tables The graphs that facility manager wants to see
could be sliced and diced depending on the room (temperature, humidity),
floor, and time; thus, they are dimension tables. Since the (temperature,
Humidity) could vary depending on the usage of the room(meeting, work-
ing, storing) and the number of the people who can present during the
work hours, adding these attributes to the room dimension table enriches
the business intelligence report. Currently, there are no more descriptive
attributes that could be added to the floor except the number of the floor,
likewise to the building except the address. However, adding more at-
tributes related to theses two entities if the business requirements change
is more flexible thanks to treating them as a dimension table. On the other
hand, due to the fact of the correlations between (temperature, humidity)
and seasons of the year, adding the season to the time dimension allows
gaining more insights about the air quality inside the building. Likewise,
there is a correlations between these facts and the part of the day(morning,
noon, evening, night); thus, the part of the day is an attribute in the time
dimension. Now let’s move to the fact table. The facility manager aims
to find out the trends of every air quality facts in the room, floor, and
building. Since IoT sends facts in minutes basis while the interest is only
on the parts of the day, there is a need to calculate the average value for
every part of day alongside, to the max and min for every individual part.

Figure 8: star schema

20

5. Data Transformation
The converting from the operational data schema to the analytical data
schema is the main task of this microservice. Figure 18 in the prototype
chapter states the schema of the operational database which needs to be
converted to the star schema model as figure 8 states. In the data log
management system subsection, the decision has been taken to stream
the events to this service, so First, let’s discuss how this service process
the stream then moves to address other components on this service.

Figure 9: Data Transformation Component

21

(a) Stream Processing
topology determines how input data is transformed into output data.
Any topology consists of a graphs of stream processors (nodes)
that are connected by streams (edges) or shared state stores.
let’s highlight every individual term in this definition.

Stream processor A stream processor is a node in the topology.
where operations such as filtering,joining, and aggregation are pre-
formed. It receives one input record at a time from its upstream
processors(node) in the topology, applies its operation to it, and may
subsequently produce one or more output records to its downstream
processors.(cofluent 2019) There are two special processors in the
topology:

• Source Processor: A source processor is a special type of stream
processor that does not have any upstream processors. It pro-
duces an input stream to its topology from the data log by con-
suming records from it and forward them to its down-stream
processors.

• Sink Processor: A sink processor is a special type of stream
processor that does not have down-stream processors. It sends
any received records from its up-stream processors to a specific
data storage”.(cofluent 2019)

Stream A stream represents an unbounded, continuously updating
data set.

State store state store is used in Stateful stream. statefull means
that a ”state” is shared between events and therefore past events
can influence the way current events are processed”.(Narkhede et al.
2017) whereas,”In a Stateless stream, the way each event is handled
is completely independent from the preceding events. Given an event,
the stream processor will treat it exactly the same way every time, no
matter what data arrived beforehand”.(Narkhede et al. 2017) there
are three type of store

• key-value store the Stream can be considered a changelog of a
table, where each data record has the same key updates the value
of the same key in the table.

• windowing store gives the capability to define a fix time window
then group the records depending on the key and the window. In
this way, when a new record arrived to the stream, there are two
possibilities, either this record will be added to the table under
a new key or aggregated its value with the record that has the
same key in the table then update the value of the key in the
table.

22

Figure 10: Time window (cofluent 2019)

• ”Session windows are used to aggregate key-based events into
so-called sessions, the process of which is referred to as session-
ization. Sessions represent a period of activity separated by a
defined gap of inactivity (or “idleness”). Any events processed
that fall within the inactivity gap of any existing sessions are
merged into the existing sessions. If an event falls outside of the
session gap, then a new session will be created.Session windows
are different from the other window types in that:all windows
are tracked independently across keys – e.g., windows of differ-
ent keys typically have different start and end times their window
sizes sizes vary – even windows for the same key typically have
different sizes”.(cofluent 2019)

After defining the terms and the concepts of streaming pro-
cessing , let’s put those terms in the project context and see how
the requirements can be met. OMS service uses Kafka producer API
to stream events to the Data Analysis service by using validate state
topic. Every room state has its key, which is a room number. Having
the same key for every room state event ensures that those events
will be transmitted to the same broker, and the same consumer will
consume it. Considering that many consumers could consume the
records, this is important to ensure the consistency of the room’s
statistics, which requires to maintain the states of past events lo-
cally. As previously discussed in the data warehouse section, one of
the requirements is to calculate the average value of the facts envi-
ronments on a sex hours basis. Accordingly, the stream processing
is statefull. we have discussed the topology of the stream processing
and its elements thus, let’s start with the

i. Stream processors: The source is the log, whereas the sink is the
data mart. Group by key, group by time window, and aggrega-
tion are nodes in between the source and sink, and they convert
the data to the desired data.

ii. group by groups the events that belong to the same room.

23

iii. Group by time window takes the outcome of the previous node
and groups them in such a way that the events that belong to
the same time window will be the outcome of this node.

iv. The aggregate node uses a state time window store to maintains
the reference to the previous event, then add the current value
to it then, update the store with the new value.

v. The store keeps updating as long as new events come to the
stream; thus, the stream needs to emit the value once the time
window is close to the downstream.

vi. The downstream catches the value and persist it to the data
mart.

Figure 11: Data flow diagram

(b) Statistic Component
This component encapsulates all the logic of statistical operations. It

24

takes the current event form stream and returns the analytical results
to the stream again.

(c) Analytic model
The Analytic model maps the model of the data mart.

Figure 12: Analytic model class diagram

For the sake of making this subsection concise and concentrating on what
is matters to the main task of data transformation microservice, the ex-
plaining of source and domain service components takes place at the pro-
totype chapter. There are two components in the OMS that follow the
same principle, which is domain-driven design. The OMS subsection at
prototype chapter discusses this notion with more details.

5.2.2 Communications between subsystem

After reviewing all microservices, it’s time to see how these services communicate
and exchange the data. We have seen that the scalability and fault tolerance are
the motives behind choosing the shared log. Accordingly, let’s briefly review the
meaning of these notions in the context of a distributed system. A distributed
system consists of many independent components running in a different machine.
Those components interact with each other through a network.Burns (2018)
The fault-tolerance notion indicates the ability of the system to continue to
operate despite the failure of one or more of its components Surely, the failure
of all the system’s components is elusive to be coped but, it could be said that
more failures can be tolerated, the higher is the resilience to failures and the
dependability of the distributed system in general ”.(Storm 2011) Scalability is a
very crucial factor in a distributed system. It refers to the ability of the system
to increase its performance by increasing the physical resources dynamically
.(Network 2018) Achieving Scalability falls into two ways. Scale by increasing
the physical resources(RAM, CPU) or scale by adding more machines into the
pool of resources. The first one, called vertical Scalability, whereas the second
one called horizontal Scalability. Traditional consuming data form shared log
fall into two categories: Shared Message Queues and Publish-Subscribe models.

25

• Shared Message Queue
In A shared message queue the system makes the messages available in a
queue. Thus, once the consumer gets a message at a time, the message
will be deleted from the queue meaning, each message pushed to the queue
is read by one consumer. Consumer pull the message from the end of the
queue that being shared amongst them.(Goswami 2018) Accordingly, this
model can not fulfill the scalability and fault tolerance.

• Publish-Subscribe Systems In this model, Many publishers send messages
to topics hosed by brokers; meanwhile, multiple subscribers subscribe to
a specific topic, and each one of them gets all messages from that topic.
Scalability is limited as each subscriber must subscribe to every partition
to access the messages from all partitions. Thus, while traditional pub-sub
models work for small networks, the instability increases with the growth
in nodes”.(Goswami 2018)

Figure 13: publish-subscriber (Goswami 2018)

• Kafka
Kafka follows the publish-subscribe model but with slightly different. The
notion of group consumer and message retention are the reasons for that
difference. Group consumers make Kafka take the advantages of both
message queuing and publish-subscribe models. Kafka consumers that
belong to the same consumer group share the same id. Consuming from
the topic is fairly distributed among all the consumers in the consumer
group. As a consumer group scales up and down, the running consumers
split the partitions up amongst themselves. Rebalancing is triggered by
a shift in ownership between a partition and consumer which could be
caused by the crash of a consumer or broker or the addition of a topic
or partition. It allows for safe addition or removal of the consumer from
the system. When the consumer startup, it requests metadata from the
Kafka cluster. The metadata contains the list of the topics, the number
of partitions, and the leader of each partition to start request data. In the
other hand, the leader of the partition traces the consumer state to detect
the consumer failure by listening to the heartbeat from consumer once

26

the consumer fails to send the heartbeat during a specific time period the
leader of the partition marks the consumer as dead and rebalancing the
work among the live consumers in the group.(Goswami 2018).Accordingly,
”Kafka’s flexible scalability makes it easy to handle any amount of data.
Users can start with a single broker as a proof of concept, expand to a
small development cluster of three brokers, and move into production with
a larger cluster of tens or even hundreds of brokers that grows over time
as the data scales up. Expansions can be performed while the cluster is
online, with no impact on the availability of the system as a whole. This
also means that a cluster of multiple brokers can handle the failure of an
individual broker and continue servicing clients. Clusters that need to tol-
erate more simultaneous failures can be configured with higher replication
factors”.Narkhede et al. (2017)

Figure 14: Kafka-Consumer-Groups (Goswami 2018)

The following explains the millstone concepts of Kafka.Kleppmann et al. (2017)

1. Kafka broker
In high-level overview its responsibilities are:

• To receive a message from the producer and acknowledge the suc-
cessful receipt.

• Store the messages in a log file to safeguard it from potential loss.

• Deliver the messages to the consumers when they request it.

2. Topic
Is a logical name to group the message. When a producer sends messages
to the cluster over a topic then only those messages will be consumed by
the consumer who subscribes to this topic.

3. Producer
Produce the messages and send them to clusters over a topic.

4. Consumer
Consume the messages that are coming from a topic.

27

5. Partition
This is very important in terms of scalability. The topic can be divided
into parts. Each part can be hold by a single broker. This broker can be
allocated to one consumer in the group of consumers. by default Kafka
use the key to determine the Partition of the message in the topic.

6. Record
Record has key and message. the message could be a simple plain text
or number or even complex object whereas the key is used to determine
which partition will receive the record. the records that has the same key
will be received by the same broker.

Embedding Kafka API in all microservices makes the scalability of these services
trivial since all the complexity will move to the Kafka. All we need is to set
the configuration in the right way. But here we must pay attention to a very
important issue which is the data transformation service use a local store and
consequently the correction of data will be compromised when a decision will
be made to scale up this service. The following example demonstrates why:
assuming there are two instances of data transformation service and one message
belongs to the room one has been processed by the first data transformation
instance and it has been stored at a local store now, the second message they
belong to the same room and time window has arrived and the second instance
of the data transformation service has started to processed the message since
the second instance does not have access to the local store to the first instance
the result will be wrong. To prevent such a scenario, each message from the
same room has one key, which is a room number. Having the same key for
every message belongs to the same room ensures that those messages will be
transmitted to the same broker, and the same consumer will consume them.
The general picture of the mechanism that is used to communicate between
microservices is following: Any microservice can write data to the topic in
the shared log. Meanwhile, any service can read data from that topic, does
its job and, rewrite the data to the new topic. Cloud gateway pushes the
telemetry data to the topic called IoT. OMS reads the data does its business
logic and rewrite the outcome to the Analysis topic in the shared data log.
The data transformation reads the data form analysis topic, then it aggregates,
transforms, persists the data in the data warehouse, and finally writes the result
in a new topic for any service that can be added in the future, and it needs this
data. In the second development iteration, this service is(Machine learning
service). Dashboard reads the data from the data warehouse by creating its
internal domain model. The sequence diagram illustrates all these steps.

28

Figure 15: Sequence Diagram

29

6 Threats modeling

This section aims to understand how an attacker might be able to compromise
a system and then make sure appropriate mitigation is in place. The model
considers mitigation as the system is designed rather than after a system is
deployed. This fact is critically important because retrofitting security defenses
to a myriad of devices in the field is infeasible, error-prone, and leaves customers
at risk.

6.1 Threat type

According to Microsoft , the types of threats can be classified as follows: Shahan
et al. (2018)

• Spoofing: Spoofing in IT world indicates to the deceive the system. usually
the attacker tries to hide his identity or to falsifying it.

• Tampering: It refers to an attempt to modify data in a harmful way,
usually throughout the unauthorized channel. For instance when data
is sent over a wire , It is more likely to be modified maliciously by the
intruder and consequently, undermine the system.

• Repudiation: This term refers to the lack of proof that someone made
an illegal attempt in the system. The reason for the lack of proof is due
to the lack of the system’s ability to trace and prohibit the operation.
Non-Repudiation refers to the ability of a system to counter repudiation
threats. For example, a user who purchases an item might have to sign
for the item upon receipt. The vendor can then use the signed receipt as
evidence that the user did receive the package.

• Information Disclosure: Involves the exposure of information to the third
party who does not have right to access it. For instance the user can read
a file that he does not have permissions to access , or the ability of an
intruder to read data in transit between two computers

• Denial of Service:Denial of service (DoS) The attacker managed success-
fully to prohibit the service from the valid-user example, by making a Web
server temporarily unavailable or unusable. The system should have the
ability to handle certain types of DoS by improving the availability and
reliability of the system.

• Elevation of Privilege: happens when Unauthorized user gets the privilege
to access the system Consequently, the system treats him as a trusted
system giving him the opportunity to destroy the entire system

6.2 Potential threats and mitigation

Referring to the design architecture there are four different regions of the Po-
tential threats. Mainly between:IoT device and cloud gateway, (cloud gateway,

30

OMS, Data transformation) and shared log. The connection between cloud
gateway,OMS,data Transformation and shared log are essentially same, thus
the threats and mitigation are similar. The process of modeling threats is com-
posed of four steps:

• Identify the region of the threats.

• Enumerate threats.

• Prioritize threat. The priority is asses depending on the likelihood of the
threat occurrence and the impacts in case it occurs.

• Mitigate threats.

6.2.1 Threats between cloud and IoT device

Type Spoof

Likelihood Very likely

Impact Compromising the correction of data

Priority High

Description
An adversary may replace the IoT Device or part of the IoT Device
with some other IoT Device.

Mitigation
Ensure that devices connecting to Field or Cloud gateway are
authenticated.

Table 15: Region-1- spoof-threat

Type Information Disclosure

Likelihood Very likely

Impact disclosure the data to illegal party

Priority High

Description
An adversary may eavesdrop and interfere with the communica-
tion between IoT Device and IoT Cloud Gateway and possibly
tamper the data that is transmitted.

Mitigation Secure Device to Cloud Gateway communication using SSL/TLS.

Table 16: Region-1- Disclosure-threat

31

Type Repudiation

Likelihood less likely

Impact
Inability to block the party who preform unauthorized action tem-
porally or permanent period

Priority Medium

Description
There may be spoofing attempts of devices, unauthorized access
to the cloud gateway and so on, all of which must be proven so
that deniability of such events or actions is impossible.

Mitigation
Ensure that appropriate auditing and logging is enforced on Cloud
Gateway .

Table 17: Region-1- Repudiation-threat

Type Elevation of Privileges

Likelihood less likely

Impact Compressing the correction of data

Priority Medium

Description
An adversary may leverage insufficient authorization checks on
the device and execute unauthorized and sensitive commands re-
motely.

Mitigation
Perform authorization checks in the device if it supports various
actions that require different permission levels.

Table 18: Region-1- Elevation of Privileges-threat

32

6.2.2 Threats between Cloud,OMS,Data Transformation

Type Tampering

Likelihood Very likely

Impact Compromising the correction of data

Priority High

Description
An adversary may inject malicious inputs into the log and affect
on stream

Mitigation
Ensure that only trusted service can read and write data to the
shared data log. .

Table 19: Region-2- Tampering-threat

Type Spoofing

Likelihood Very likely

Impact Compromising the correction of data

Priority High

Description
If proper authentication is not in place, an adversary can spoof a
source process or external entity and gain unauthorized access to
shared data log.

Mitigation
Ensure that standard authorization techniques are used to read
and write data to the log.

Table 20: Region-2- Spoofing-threat

Type Information Disclosure

Likelihood Very likely

Impact disclosure the data to illegal party

Priority High

Description
An adversary can gain access to sensitive data by sniffing traffic
to pipeline

Mitigation Secure communication to the services using SSL/TLS.

Table 21: Region-2- Information Disclosure-threat

33

7 Prototype(Proof of Concept)

This chapter discusses the assumptions that would simplify some of solutions in
order to demonstrate the concept of the architecture. It also emphasizes on the
requirements for OMS to make the system as a whole. finally, it end ups with
a review of the deployment plan.

7.1 Mocking OMS

Due to the reasons that have been mentioned in the architecture chapter, The
OMS is mocked. The following discusses, the parts of it that have direct con-
nexion to the context of this project, which are fetching, persisting, and what
is the best approach to make this data available to the analysis service, these
points will be taken into account when designing and implementing the service
by BCT.
”When we create a software application, a large part of the application is not
directly related to the domain, but it is a part of the infrastructure or serves
the software itself[..]. However, when domain-related code is mixed with the
other layers,it becomes extremely difficult to see and think about. Superficial
changes to the UI can actually change business logic.To change a business rule
may require meticulous tracing of UI code, database code, or other program
elements. Implementing coherent, model-driven objects becomes impractical.
Automated testing is awkward. With all the technologies and logic involved in
each activity, a program must be kept very simple or it becomes impossible to
understand. Therefore, partition a complex program into LAYERS. Develop a
design within each LAYER that is cohesive and that depends only on the layers
below”.(Evan 2003a) Based on this, it is a good practice to design the object
management system service that follows this approach.
As shown in the diagram, OMS compromise with many components. every
component handles the complexity of one matter. The components that are in-
tuitive are excluded from this discussion. However, this section focuses mainly
on the component that may be unclear in addition to, the domain model and
data model

34

Figure 16: OMS Component Diagram

1. Sources
”When you’re working with a remote interface [..], each call to it is expen-
sive. As a result you need to reduce the number of calls, and that means
that you need to transfer more data with each call”. (Fowler 2002).Con-
sequently the schema of call could does not map any object in the domain
model.

2. Domain Services
Mainly used to fill the gap between source object and domain model object
then , it uses the data access layer to persist the domain model object.

3. Stream services
This component is consider as a requirement. in a high level overview it
,receives the message from IoT device, process it then , writes the outcome

35

to the new topic in the shared data log.

4. Domain Model
As was pointed out earlier, the domain model problem is a building man-
agement matter. The building can be seen as a fixed asset, which, in turn,
includes many other fixed assets” floors”. The floor includes many other
fixed assets ”room”. The room includes many properties(temperature,
humidity). The temperatures and humidity are classified as a property as
their values change according to the time. Accordingly, this is a hierarchy
model. Each room is tracking its properties, similar to the floors and the
buildings. The primary aim of this model is to ensure that every building
complies with governance roles. As it states in the UML class diagram,
the assets follow the composition pattern where floor and building are
compositions; meanwhile, the room is the leaf. The composition pattern
allows the client to iterate over all assets in the same way whether this
asset is a leaf or root.(Evan 2003b)

Figure 17: Domain model class diagram

36

5. Data Model
The following diagram is an ER diagram that maps to the domain model.
Designing the data model in this way gives the advantage of using poly-
morphism in the domain model; meanwhile, it does not repeat the same
columns name. The diagram illustrates that the data model applies the
join table strategy for inheritance meaning, each class of the inheritance
hierarchy maps to its own database table. The table that maps to abstract
superclass contains columns for all shared entity attributes whereas, the
other tables hold only the columns specified for the mapped entity class
and a primary key with the same value as the record in the table of the
superclass.

Figure 18: ER diagram

7.2 IoT device

In the production the IoT device should only send the Environment data(reduce
the data in network). identifying the geographical data and the time should be
a task to the OMS. But for the sake of simplicity, Each IoT device is aware of its
geographical location within the building. it combines the location data besides
the date when it sends the temperature and humidity to the data shared log.

7.3 Cloud gateway

The importance of the cloud gateway has been discussed, But as a assumption
to the prove of the concept, the IoT data will be forwarded to the data shared
log and skip the IoT cloud gateway.

37

7.4 Deployment view

This subsection explains how the prototype will be deployed to prove the con-
cept. Both OMS and Data transformation will be containerized inside a docker
container and Azure kubrenates will be the execution environment whereas, The
IoT device will be out of the Azure kubernates cluster. the data log management
system and data mart will be delivered by azure cloud service.

Figure 19: Deployment diagram

38

8 Implementation

This chapter discuses the implementation of the system. which technologies
have been choose and the reasons behind the choices.

8.1 IoT device

Python high-level scripting language. It has useful libraries that support a wide
range of sensors type. Getting data from sensors can be done with fewer lines of
code thanks to these libraries. Moreover, cloud services like Google and Azure
have SDK that supports this language. These SDK make sending the telemetry
data to the cloud very straightforward with fewer lines of code. The following
code shows how it is easy to get data from the sensor.

1 def get_Facts ():

2 temperature ,humidity = Adafruit_DHT.read_retry(DHT_SENSOR ,

DHT_PIN)

3 return temperature ,humidity

Listing 1: Get Data From sensor

8.2 Cloud Gateway

In the architecture chapter, it was mentioned that the cloud gateway is Azure
IoT hub, and we’ve seen that letting the cloud gateway writes the telemetry
data to the Kafka cluster is the best approach to bring data to the solution.
Azure IoT hub supports routing data to the Azure IoT event service. The way
that the azure IoT event work is similar to the Kafka .it has the same notions.
Moreover, it allows the consumer of the Kafka cluster to consume data in the
same way without needing to change any lines of code.

8.3 OMS

This service uses the java spring framework thanks to the many reasons. We’ve
seen what is the model-driven design mean and what is the values that can be
achieved by following this approach. Spring framework helps to develop this
approach by dividing each complexity into layers.

• Web layer: Concerns on the complexity of accessing the network. Defining
the route and the sources that will be used over the network.

• Data access layer: Spring has a powerful way to handle the complexity
of accessing the database by using the notion of JPA specification. The
JPA specification allows defining which objects should be persisted, and
how those objects should be persisted in the applications. By itself, JPA
is not a tool or framework; instead, it defines a set of concepts that can
be implemented by any ORM tool or framework like Hibernate. This
increase the level of flexibility since it is possible to change the ORM tool

39

without requiring any change in the code.Tyson (2019) Moreover, using
this API allows the developer to focus on the domain model problem
without much concern about the persistence and retrieving objects from
the database. All the developer has to do is add some annotations and let
the underneath framework take care of the complexity . for instance in
the prototype chapter the composition pattern has been used as a solution
to the domain model. We have seen that the buildings and floors are the
compositions whereas the rooms are the leaves. To make this pattern
works although the data is stored in a database is, add some samples
annotations to the composition class like following

1 @OneToMany(cascade = CascadeType.ALL , orphanRemoval = true

,fetch = FetchType.EAGER)

2 @JoinTable(name = "Asset_property", joinColumns = {

@JoinColumn(name = "parent_id")}, inverseJoinColumns = {

@JoinColumn(name = "asset_id")})

3 private final List <AbstractAsset > assets = new ArrayList

<>();

4

5

Listing 2: JPA example

• It is easy to embed Kafka consumer and producer API to the frame-
work. in-addition, to change the configuration according the environ-
ments(production,development).

• Relatively easy to preform tests.

8.4 Data Transformation

This service also uses the spring framework as a technology for the same rea-
sons. Since the primary task of this service is to process the stream and perform
aggregation, let’s review some code and see how this code achieves the require-
ments.

1 KStream <String , State > stream = kStreamBuilder.stream("Analysis",

Consumed.with(AppSerdes.String (),AppSerdes.State ()).

withTimestampExtractor(new StateTimeExtractor ())

2);

Listing 3: Creating source processor node

The code above creates the source of the topology. Since the broker sends the
record as binary data and the record consists of key and message, we should
provide the topology in how to deserialize the message and the key. Meanwhile,
in most cases, the outcome of the topology is written to the new topic in the
Kafka cluster. Consequently, we need the serializer. Thus, the Kafka stream
API combines serializer and deserialize in one class, and it calls serdes.

40

1 KTable <Windowed <Integer >, WindowStatistic > KT0 = stream.groupByKey

(Grouped.with(AppSerdes.Integer (), AppSerdes.IoTMessage ())).

windowedBy(TimeWindows.of(Duration.ofMinutes (2)).grace(Duration

.ZERO))

Listing 4: Creating groupby key

As it states in the code above, after creating the source, we add two nodes to
the topology. First one group by key. In the design chapter, we have decided
that the key of the record is the room number. The second one is the time
window.

1 .aggregate(

2 () -> new WindowStatistic (),

3 (k, v, aggValue) ->

4 {

5 WindowStatistic bs = new WindowStatistic ();

6 bs.setFloorNumber(v.getFloorNumber ());

7 bs.setRoomNumber(v.getRoomNumber ());

8 bs.setDate(v.getTime ());

9 bs.setTotalTemperature(v.getTemp ()+aggValue.

10 getTotalTemperature ());

11 bs.setTotalHumidity(v.getHum ()+aggValue.

12 getTotalHumidity ());

13 bs.setStateCount(aggValue.getStateCount ()+1);

14 if (v.getHum () > aggValue.getMaxHumidity ())

15 bs.setMaxHumidity(v.getHum ());

16 else

17 bs.setMaxHumidity(aggValue.getMaxHumidity ());

18 if (v.getTemp () < aggValue.getMinTem ())

19 bs.setMinTem(v.getTemp ());

20 else

21 bs.setMinTem(aggValue.getMinTem ());

22 if (v.getTemp () > aggValue.getMaxTem ())

23 bs.setMaxTem(v.getTemp ());

24 else

25 bs.setMaxTem(aggValue.getMaxTem ());

26 if (v.getHum () < aggValue.getMinHumidity ())

27 bs.setMinHumidity(v.getHum ());

28 else

29 bs.setMinHumidity(aggValue.getMinHumidity ());

30 return bs;

31 },

32 Materialized.<Integer , WindowStatistic , WindowStore

33 <Bytes ,byte[]>>with(AppSerdes.Integer (),

34 AppSerdes.StateStatistic ())

35)

Listing 5: Creating Aggregation node

The above code adds the third node to topology, which is the aggregation node.
The aggregate method takes three functions as parameters. The first one to
initialize the value, and it is called by framework one time when a new record
that belongs to the new time window or a new room enters the stream. The
second function returns bs object. The bs object will be passed as aggValue at
the next call of this function. The framework calls this function when a new

41

record enters the stream, which belongs to the same time window and room
to the last record. The parameters of this function are (k, v , aggvalue). “k”
is the key for a new record, that belongs to the same time window and room
of the last record. “Value”: The value for a new record, which belongs to the
same time window and room of the last record. “aggrecord” is the value of the
last record, which belongs to the same time window and room of the current
record. The last function is used to access the state store. the state store saves
the previous value of the aggevalue

1 /* suppres the value to emmit after the time window is finish */

2 .suppress(Suppressed.untilWindowCloses(unbounded ()));

Listing 6: suppress the topology to emit the value

The above code suppresses the topology to emit the value only when the time
window is closed.

1 /* creating the sink which , is saving the record to the data mart*/

2 KT0.toStream ().foreach(

3 (key , value) -> {

4 ioTMessageService.saveFact(value);

5 }

6);

7 return stream;

8 }

Listing 7: Creating sink node

Finally, the suppressed value is passed to the downstream then it is persisted
to the data mart.

8.5 Security

Another crucial part on the system is security issues as we discussed in the threat
model it is essential to the whole system to exchange data securely meaning
the data needs to be encrypted and only the subsystem inside the solution can
decrypt data. We’ seen one solution was to implement the connection over TLS.
Thus let’s see how to implement it. Each service in the solution has a public-
private key pair and a certificate to identify them, however, an intruder can
claim to be any service in the solution since the certificate unsigned by a trusted
party. Therefore, to prevent the counterfeiting, the certificate need to be singed
by a legitimate authority. The official Kafka documentation use the following
terminology to clarify the role of this legitimate authority(CA).” CA works like
a government that issues passports - the government validates the identity of
the person applying for the passport and then provides a passport in a standard
form that is difficult to forge. Other governments verify the form is valid to
ensure the passport is authentic. Similarly, the CA signs the certificates, and the
cryptography guarantees that a signed certificate is computationally difficult to
forge”. Thus, signing the certificate by CA assurances to any broker in the Kafka
cluster that they are connecting to the authenticated service in the solution and
the data is encrypted. Every service in the solution has ,a keystore to store its

42

identity , and truststore to store all the certificates that the service should trust.
Applying this approach has difficulties in terms of scalability meaning, adding
a new broker to the cluster entails, adding it as a trusted machine in every
service on the solution. Alternatively adding a certificate into one’s truststore
means trusting all certificates that are signed by CA. This approach is called
the chain of trust. In other words, by using chain of trust, It is possible to sign
all certificates in the solution with a single CA, and have all services share the
same truststore that trusts the CA.Apache-Software-Foundation (2017)

43

9 Testing and Validation

This section provides an overview of what need to be tested and how to carry
out the tests.

9.1 Test Strategy

9.1.1 Feature to be tested

ID
Micro
service

Component
Applicable
Roles

Description

FT1 Power BI –
Facility
Manger

Facility manger: the
facility manger can
see the historical
data(temperature,Humidity)
for any as-
sert(Floor,Room) at
any point time in the
past.

FT2
Data
Transfor-
mation

Domain Ser-
vices

System
The system can persist the
data to the data mart.

FT3
Data
Transfor-
mation

Stream pro-
cessing

System

The system can process
the stream and compute
the average,max,min
value .

NFT1
IoT
device

NetworkServices
IoT
device

IoT device:Only authenti-
cated device can write to
the log

NFT2

OMS,
Data-
Transfor-
mation

Stream pro-
cessing

System
System:scaling up these
services does not influence
on the data consistency

NFT3

OMS,
Data-
Transfor-
mation

Stream pro-
cessing

System

System:the overview per-
formance of the system
when handling the ioT
message

Table 22: Feature to be tested

44

9.1.2 Feature not to be tested

• User Interface.

• Regression test.

• OMS database.

• User security.

• Dashboard performance.

• User acceptance testing.

These features has been excluded from the test strategy because, It does not
influence on the prove of the concept to the architecture. other features like user
security and dashboard performance have been excluded since ,the Microsoft
power BI is a tool archive these features.

9.2 Test type

Manuel testing for dash board, Integration Testing (Individual software modules
are combined and tested as a group),System Testing: Conducted on a complete,
integrated system to evaluate the system’s compliance with its non-functional
requirements(security-scalability-performance,availability)

9.3 Test Objective

The test objectives are to verify the recommended architecture meets the func-
tional and none functional requirements of the air quality system.

9.4 Test Criteria

This subsection clarifies when the test should be considered successful and when
it is failed.

9.4.1 Failure Criteria

The test is considered to have failed when, one of the output does not meet the
expected value.

9.4.2 Passed Criteria

The test is considered successful when, all the output meet the expected value.

45

9.5 Tools

Name Description

Test-Driver-
Topology

”simulates the library run-time that continuously fetches records from
input topics and processes them by traversing the topology. You can use
the test driver to verify that your specified processor topology computes
the correct result with the manually piped in data records. The test
driver captures the results records and allows to query its embedded
state stores”.Kafka Documentation (2019) .

test contain-
ers

”Testcontainers is a Java library that supports JUnit tests, providing
lightweight, throwaway instances of common databases, Selenium web
browsers, or anything else that can run in a Docker container”.(North
2015)

EmbdedKafka mock the kafka broker in the memory.

Table 23: test tools

9.6 Test Environment

The Test Environment should be setup as figure below

Figure 20: Test Environment

46

9.7 Test cases

This subsection explains how to perform tests. These test cases indicate to
the features that need to be tested as it is mentioned at ”inside the scope
subsection”. Each feature is tested in more than possible scenario. Each scenario
has its inputs and expected outputs. The test cases start with how to test
functional requirements; then, it moves to non-functional requirements. The
order of testing functional requirements(FT1, FT2, FT3) is very important, as
the outputs of the previous test cases are the input of the current one. The way
that the table uses to indicate to its inputs is, matching its scenario number
with the scenario number of the previous table then, corresponding expected
outputs are the inputs of the table.

1. (floor1,room1,10◦,40%, 2018-04-20T06:15:24).

2. (floor1,room1,15◦,35%, 2018-04-20T10:23:22).

3. (floor1,room1,22◦,22%, 2018-04-20T15:23:22).

4. (floor1,room1,23◦,22%,2018-04-20T16:17:45).

5. (floor1,room2,23◦,21%,2018-05-26T16:17:45).

6. (floor4,room3,23◦,21%, 2019-04-21T16:17:45).

The main reason for choosing these inputs is , these inputs represent all possible
situations. Same day but different part of the day . two different days, two
different months, two different years. Furthermore three different rooms two of
them belong to the same floor and last one belongs to different floor.

47

9.7.1 FT3

One important task in data transformation service is to compute the aver-
age,max and min value for every room during 6 hours time window and emit
the value to the down stream pipeline

S.No scenario
data
input

expected output status

1

two records
belong to the
same room
and time
window

(1,2)
fact(floor1,room1,12.5◦,37.5%,
2018-04-20-2)

pass

2

Four records
belong to the
same room
and different
time window

(1,2,3,4)

1.
fact(floor1,room1,12.5◦,37.5%,
2018-04-20-2))

2. fact(floor1,room1,22◦,
22%, 2018-04-20-3)

pass

3

two records
belong to
the different
room and
different
time window

(5,6)

1. fact(floor1,room2,23◦,
21%, 2018-05-26-3)

2. fact(floor4,room3,235◦,
21%, 2019-04-21-3)

pass

Table 24: Test Case FT3

48

9.7.2 FT2

S.No Scenario Expected Output Status

1

Stream processing
emits one result be-
longs to the same
room. Then, the
domain service per-
sists it to the data
mart. The ex-
pected value repre-
sents the objects af-
ter have been re-
trieved from the
data mart

1. date1=(2018,4,20,2)

2. floor1=(1,”first floor at bct”)

3. room1=(1,”It room”)

4. factEnviroment1= (”tempreature”)

5. factEnviroment2= (”Huimidity”)

6. fact1=(date1,floor1, room1,
factEnvirment1,12.5◦,)

7. fact2=(date1,floor1, room1, factEnvir-
ment2, 37%)

pass

2

Stream processing
emits two results
belongs to the same
room but different
time window then,
the domain service
persists it to the
data mart. The ex-
pected value repre-
sents the objects af-
ter have been re-
trieved from the
data mart.

1. date2=(2018,4,20,2),date3=(2018,4,20,3)

2. floor1=(1,”first floor at bct”)

3. room1=(1,”It room”)

4. factEnviroment1= (”tempreature”)

5. factEnviroment2= (”Huimidity”)

6. fact3=(date2,floor1, room1,
factEnvirment1,12.5◦)

7. fact4=(date2,floor1, room1, factEnvir-
ment2,37%)

8. fact5=(date3,floor1, room1,
factEnvirment1,22◦)

9. fact6=(date3,floor1, room1, factEnvir-
ment2,22%)

pass

Table 25: Test Case FT2 part1

49

S.No Scenario Expected Output Status

3

Stream processing
emits two results
belong to the differ-
ent room and time
window. Then, the
domain service per-
sists it to the data
mart. The ex-
pected value repre-
sents the objects af-
ter have been re-
trieved from data
mart.

1. date4=(2018,05,26,3),
date5=(2019,4,21,3)

2. floor1=(1,”first floor at
bct”),floor4=(4,”fourth floor at bct”)

3. room2=(2,”Facility manger room”),
room3=(3,”manger room”)

4. factEnviroment1= (”tempreature”)

5. factEnviroment2= (”Huimidity”) ,

6. fact7=(date4,floor1,room2,
factEnvirment1,23◦)

7. fact8=(date4,floor1, room2, factEnvir-
ment2, 21%)

8. fact9=(date5,floor4,room3, factEnvir-
ment1, 23◦)

9. fact10=(date5,floor4, room3, factEnvir-
ment2, 21%)

pass

Table 26: Test Case FT2 part2

9.7.3 FT1

Passing the dashboard test means that the schema of data mart is correct. We
have seen that the previous tests that focused on testing the data from the
moment it arrived at the data transformation service to the moment when data
is persisted to the data mart have passed. Passing all of these tests means the
system fulfills its functional requirements. The following are the inputs for this
test after rearranging them. As a reminder, these inputs are the outputs from
the previous test.

1. fact3=(date2,floor1, room1, factEnvirment1 , 12.5◦)

2. fact4=(date2,floor1, room1, factEnvirment2 , 37%)

3. fact5=(date3,floor1, room1, factEnvirment1 , 22◦)

4. fact6=(date3,floor1, room1, factEnvirment2 , 22%)

5. fact7=(date4,floor1,room2, factEnvirment1 , 23◦)

50

6. fact8=(date4,floor1, room2, factEnvirment2, 21%)

7. fact9=(date5,floor4,room3, factEnvirment1, 23◦)

8. fact10=(date5,floor4, room3, factEnvirment2, 21%)

51

S.No Scenario Expected Output Status

1

facility manager wants to
see all facts in all rooms
for the 2018 year, the aver-
age(temperature, humid-
ity) and min, max value
during that year.

1. the records is map to
same number of the input
(1,2,3,4,5,6)

2. temperature: avg=19.16,
max=23 , min=12.5

3. Humidity: avg=26.6,
max=37 , min=21

pass

2

The facility manager
wants to see all facts in
all rooms for the April
of the 2018 year, the
average(temperature,
humidity) and min, max
value during that month.

1. the records is map to
same number of the input
(1,2,3,4)

2. temperature: avg=17.25,
max=22 , min=12.5

3. Humidity: avg=29.5,
max=37 , min=22

pass

3

The facility manager
wants to see all facts in
all rooms for the day 20th
April at the 2018 year,
the average(temperature,
humidity) and min, max
value during that day.

1. the records is map to
same number of the in-
put(1,2,3,4)

2. temperature: avg=21,
max=22 , min=20

3. Humidity: avg=22.5,
max=23 , min=22

pass

4

The facility manager
wants to see all facts in
all rooms for a floor1
the average(temperature,
humidity) and min, the
max value for that floor.

1. the records is map to
same number of the input
(1,2,3,4,5,6,7,8)

2. temperature: avg=19.16,
max=23 , min=12.5

3. Humidity: avg=26.6,
max=37 , min=21

pass

Table 27: Test Case FT1

52

9.7.4 NFT1

In the design chapter, an important point is indicated, which is the correction
of data during the scalability. this test verifies that room’s messages are always
consumed by the same instance of data transformation

S.No scenario data input expected output status

2

Four records
each two of
them belong
to the differ-
ent room

1.
(floor1,room1,20◦,23%,
2018-04-20T12:21).

2.
(floor1,room1,22◦,22%,
2018-04-20T16:04).

3.
(floor1,room2,12◦,16%,
2018-04-20T20:21).

4.
(floor1,room2,10◦,14%,
2018-04-20T23:04)

1. if the instance
1 consumes
1,2 , the
instance 2
consume 3,4

2. if the instance
1 consumes
3,4 , the
instance 2
consume 1,2

pass

Table 28: Test Case NFT1

9.7.5 NFT2

:

S.No scenario data input expected output status

2

record come
form authen-
ticated IoT
device

1.
(floor1,room1,20◦,23%,
2018-04-20T12:21).

1. The record is
written to the
log in the bro-
ker

pass

2

record come
from unau-
thenticated
device

1.
(floor1,room1,20◦,23%,
2018-04-20T12:21).

1. The record is
not written to
the log in the
broker

pass

Table 29: Test Case NFT2

53

9.7.6 NFT3

This test describes how the overall performance of the application is validated
and what are the metric need to be measure. lets’ start in what are metrics
that need to be measured

• The average time to poll record from log. It called AvgPull in the Perfor-
mance metrics table .

• The average number of records processed per millisecond.

• The memory consumption.

• The cpu consumption.

Monitoring these metrics gives a good overview to diagnose the neck bottle
problem and then make the right decision to improve the performance. Fortu-
nately, Kafka Streams provides the mechanism for collecting these performance
metrics. Then it reports them to Java Management Extensions (JMX). One
thing to keep in mind is that JMX only works with live running applications, so
the metrics we’ll look at will be when the application is running. The metrics of

DTNum Cpu Memory AvgPull AvgRcs

1 1.6 150MB 2Milisece
1.75 records per Millisec-
onds

Table 30: Performance metrics with 1 IoT device

DTNum Cpu Memory AvgPull AvgRcs

1 3 250MB 4Milisece 3records per Milliseconds

Table 31: Performance metrics with 3 IoT

DTNum Cpu Memory AvgPull AvgRcs

1 1.6 150MB 2Milisece
1.75 records per Millisec-
onds

2 1.8 156 2.6Milisece
2.3 records per Millisec-
onds

Table 32: Performance metrics With 4IoT device

the table illustrates that the load is distributed equally among all microservice
instance in every time a new IoT device is added.

54

10 Conclusion

Referring back to the main research question, which is about the recommended
architecture for a system that collects IoT data to perform operational tasks.
Then store all of that data for later analysis. This analysis helps the decision-
maker to find out trends and consequently make strategic decisions that depends
on facts. The first step was to choose the micro-services architecture. De-
coupling, flexibility, deployability are essential factors in making this decision.
Another critical decision is shared data log, which, besides the micro-services
architecture, defines the general architecture of the system. The presence of
IoT devices that consistently produce immutable data was the main reason for
choosing the data shred log. Then the decision was made to use Kafka proto-
col as a communication mechanism among micro-services. Scalability and fault
tolerance are the reasons for choosing the Kafka protocol. In conclusion, The
combination of micro-services, data shred log, and Kafka protocol makes the
digital system mapping the dynamic nature of the system in the real world,
mainly since the system deals with sensors that observe the changes in the en-
vironment around us. Sometimes these changes need a real-time response as
they occur. In contrast, the absence of any element of this combination causes
a gap between reality and the digital world. This gap because of the static
nature of the digital system. This architecture is extendable not modifiable in
other words, adding a new micro-service to achieve a new requirements does not
effect on any other micro-service and there is no need to modify the architec-
ture.Another advantages of this architecture is the natural technology meaning
the new micsro-service could be implemented buy using any programming lan-
guage.

55

References

Apache-Software-Foundation (2017), ‘Kafka 2.5 documentation’.
URL: https://kafka.apache.org/documentation/security

Balkenende, M. (2018), ‘The big data debate: Batch versus stream processing’.
URL: https://thenewstack.io/the-big-data-debate-batch-processing-vs-
streaming-processing

Brown, S. (2019), ‘Visualising software architecture with the c4 model’.
URL: https://www.youtube.com/watch?timecontinue = 6v = x2 −
rSnhpw0gfeature = emblogo

Burns, B. (2018), Designing distributed systems, O’Reilly Media, Inc, pp. 22–23.

Chaudhuri, S. & Dayal, U. (1997), ‘An overview of data warehousing and olap
technology’, ACM SIGMOD Record pp. 5–8.

cofluent (2019), ‘Valuable resources on stream processing’.
URL: https://docs.confluent.io/current/streams/architecture.html

Dunko, G., Misra, J., Robertson, J. & Snyder, T. (2017), ‘A reference guide to
the internet of things’, Bridgera 2017, 34–57.

Evan, E. (2003a), Domain-Driven Design: Tackling Complexity in the Heart of
Software, Addison-WesleyProfessional.
URL: http://books.google.com/books?id=W-xMPgAACAAJ

Evan, E. (2003b), Head first, Addison-WesleyProfessional.
URL: http://books.google.com/books?id=W-xMPgAACAAJ

Fowler, M. (2002), Patterns of enterprise application architecture, Addison-
Wesley Professional, 2003, p. 401.

Goswami, S. (2018), ‘Scalability of kafka messaging using consumer groups’.
URL: https://blog.cloudera.com/scalability-of-kafka-messaging-using-
consumer-groups

Hernandez, A. (2018), ‘Bi data modeling with sqldbm’.
URL: https://blog.sqldbm.com/bi-data-modeling-with-sqldbm/

Kafka Documentation, D. (2019), ‘Official kafka api documentation’.
URL: https://kafka.apache.org/20/documentation/streams/developer-
guide/testing.html

Kleppmann, M. (2016), Making sense of stream processing, Confluent, pp. 41–
52.

Kleppmann, N., Sshapira, G. & Palino, T. (2017), Kafka: The definitive guide
real-time data and stream processing at scale, Confluent, pp. 29–33.

i

microsoft (2018), Microsoft azure iot reference architecture, Microsoft, pp. 13–
15.

Myers, P., Saxton, A., Blythe, M. & Sharkey, K. (2019), ‘Understand star
schema and the importance for power bi’.
URL: https://docs.microsoft.com/en-us/power-bi/guidance/star-schema

Narkhede, N., Sshapira, G. & Palino, T. (2017), Kafka: The definitive guide
real-time data and stream processing at scale, Confluent, pp. 13–15.

Network, P. (2018), ‘Three dimensions of distributed system scalability design’.
URL: https://medium.com/@PointnityNetwork/three− dimensions− of −
distributed− system− scalability − design− 8e0319163c8d

North, R. (2015), ‘Test container java’.
URL: https://www.testcontainers.org

RADACAT-Team (2016), ‘Data preparation; first and foremost important task
in power bi’.
URL: https://radacad.com/data-preparation-first-and-foremost-important-
task-in-power-bi

Richardson, C. (2019), Microservices patterns, Manning Publications Co, pp. 2–
5.

Sethi, P. & Smruti, R. (2017), ‘Internet of things: Architectures, protocols, and
applications’, Journal of Electrical and Computer Engineering 2017, 11–17.

Shahan, R., Meadows, P. & Lamos, B. (2018), ‘Internet of things (iot) security
architecture’.
URL: https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-
security-architecture

Storm, C. (2011), Specification and Analytical Evaluation of Heterogeneous Dy-
namic Quorum-Based Data Replication Schemes.

Tyson, M. (2019), ‘Introduction to the java persistence api’.
URL: https://www.javaworld.com/article/3379043/what-is-jpa-introduction-
to-the-java-persistence-api.html

ii

