BACHELOR THESIS

Transmission and Analysis of Vehicle
Telemetry Data Using OBD-II

and Cellular Networks

Submitted by Nicholas Walter

In fulfillment of the requirements for the degree
Bachelor of Science in Informatics

To be awarded by the
Fontys Hogeschool Techniek en Logistiek

Gifhorn, June 12, 2018

Information Page

Fontys Hogeschool Techniek en Logistiek

Postbus 141, 5900 AC Venlo

Bachelor Thesis

Name of student:
Student number:
Course:
Period:

Company name:
Address:
Postcode, City:
Country:

Company coach:
Email:
University coach:
Email:

Examinator:
External domain expert:

Non-disclosure agreement:

Nicholas Walter
2552736

Informatics - Software Engineering
2018-02-15 - 2018-06-12

TIAV
Rockwellstrafie 16
38518 Gifthorn
Germany

Dr. Arnd Eden
arnd.eden@iav.de

Ferd van Odenhoven
f.vanodenhoven®@fontys.nl

Jan Jacobs
O. van Roosmalen

No

mailto:arnd.eden@iav.de
mailto:f.vanodenhoven@fontys.nl

il

Summary

This report describes the project "Transmission and Analysis of Vehicle Telemetry Data Using
OBD-II and Cellular Networks".

The project’s aim was to improve the process of carrying out test runs with vehicles by
implementing a software tool to gather vehicle telemetry data and global position and trans-
mitting this data to a remote analysis server over encrypted mobile networks. Additionally,
the possibility of carrying out live-analysis on the same data should be explored by means of
a feasibility study.

Although the implementation of the transmission tool was completed otherwise without a
flaw, an error was encountered with the usage of security certificates that are required for the
encryption of the transmitted data. Because certificates cannot be loaded, connections cannot
be encrypted. This error could not be fixed. Aside from two low-priority requirements, the
software tool is otherwise feature-complete.

The feasibility study regarding live data analysis yielded the result that carrying out the live
analysis on the target device is possible from a software point of view. However, it is expected
that running both the transmission tool and live analysis on the same device would lead to
performance issues. Furthermore not all required data may be easily obtainable.

The overall project was therefore not successful with respect to its originally formulated goals,
although the created software product specifically can be completed with very little effort if
a solution to the aforementioned problem can be found. This means that the results of the
project can easily be used in further projects to fulfill their original purposes.

1l

Declaration of Authorship

I, the undersigned, hereby certify that [have compiled and written this document and the
underlying work / pieces of work without assistance from anyone except the specifically as-
signed academic supervisor. This work is solely my own, and I am solely respounsible for the
content, organization, and making of this document and the underlying work / pieces of work.

I hereby acknowledge that I have read the instructions for preparation and submission of
documents / pieces of work provided by my course / my academic institution, and I understand
that this document and the underlying pieces of work will not be accepted for evaluation or
for the award of academic credits if it is determined that they have not been prepared in
compliance with those instructions and this statement of authenticity.

I further certify that I did not commit plagiarism, did neither take over nor paraphrase (digital
or printed, translated or original) material (e.g. ideas, data, pieces of text, figures, diagrams,
tables, recordings, videos, code, ...) produced by others without correct and complete citation
and correct and complete reference of the source(s). I understand that this document and
the underlying work / pieces of work will not be accepted for evaluation or for the award of
academic credits if it is determined that they embody plagiarism.

Name: Nicholas Walter
Student number: 2552736
Place, Date: Gifthorn, 2018-06-12
Signature:
. 5 b
\\ .._,-./ { 7

v

Contents

Summary ii
Declaration of Authorship iii
List of Figures vii
List of Tables viii
List of Abbreviations ix
Glossary X
1 Introduction 1
1.1 Context o oo 1
1.1.1 The Company 1

1.1.2 The Problems 1

1.1.3 Graduation Assignment L. 2

1.1.4 Freematics ONE+ o 2

1.2 Report Structure 2

2 Planning 3
2.1 Deliverables e 3
2.2 Scope ... 3
2.3 Software Development Framework 4
2.4 Time Planningo 4

3 Feasibility Study 5
3.1 Purpose 5)
3.2 Target System 5
3.3 Research Questions and Methodology, 6
34 Results. e 6

4 Analysis 7
4.1 Stakeholder Analysis 7
4.2 Risk Analysis 8
4.3 Requirements Analysis L 9
4.3.1 Requirements Elicitation Lo L. 9

4.3.2 Requirements Evaluation 9

5 Software Design 11
5.1 Design Parameters 11

5. 1.1 Design Aims oo e 11

5.1.2 Design Constraints 11

5.2 Basic Structure Lo 12

521 Setup and Loops
5.22 Modules oL
5.3 Module Design
5.3.1 Inter-Module Communication Design
5.3.2 DataKeeping Module o o oL
5.3.3 DataHandling Module 0oL
5.34 Time Keeping
54 Multi Threading Design oL
9.5 Test Design e
551 Code Tests
5.5.2 System Tests L
6 Quality Management
6.1 Quality Management Approach L.
6.2 Quality Control
7 Implementation
7.1 New Technologies o
7.1.1 Serial Communication 0.
7.1.2 Cellular Module Control: AT Commands
7.2 Challenges L
7.2.1 Memory Management oL
7.2.2 AT Command Implementation
7.2.3 Task Timing Lo
7.2.4 Certificate Installation
7.2.5 Certificate Usage
7.3 Result e
8 Validation
8.1 Software Tests« . e
81.1 Unit Tests
8.1.2 Integration Tests L L
8.2 Quality Validation
8.3 Requirement Comparison
8.4 Contradiction Between Results 0oL

9 Conclusion

10 Recommendations

List of References
Project Plan
Stakeholder Analysis
Risk Analysis
Requirements Analysis

Quality Management Plan

H =2 O W »

Software Design Document

12
12
13
13
14
16
17
18
19
19
19

20
20
20

21
21
21
21
22
22
22
24
26
26
27

28
28
28
28
29
29
30

31

32

33

35

46

50

56

68

79

vi

G Research Report 96
H Example JSON File 107

I Product Class Diagram 108

Vil

List of Figures

4.1 Stakeholder Power/ interest grid L. 7
4.2 Risk Matrix 8
4.3 Cost/ Value Graph of Project Requirements 10
5.1 Product Class Diagram: DataKeeping Module 15
5.2 Product Sequence Diagram: Encoding Data in JSON 16
5.3 Product Class Diagram: Datallandling Module 17
5.4 Product Sequence Diagram: Handling Data 18
7.1 Hardware/ Software Interactions on the Target Device 24
7.2 Thread Diagram L 25
8.1 Calculated Score of Quality Metrics over Time 29
A1 Stakeholder Power/ interest grid L. 41
A2 Gantt Chart 44
B.1 Stakeholder Power/ interest grid 49
C.1 Risk Matrix oo 54
D.1 Cost/ Value Graph of Project Requirements 61
F.1 Product Domain Model L o 83
F.2 Product Architecture 84
F.3 Product Class Diagram: DataReading module 86
F.4 Product Sequence Diagram: Process of reading data from sensors 87
F.5 Product Class Diagram: DataKeeping module 88
F.6 Product Sequence Diagram: Process of encoding data in a DataContainer to
JSON e 88
F.7 Product Class Diagram: DataHandling module 89
F.8 Product Sequence Diagram: Process of handling data contained in a DataCon-
tainer object. 90
F.9 Product Class Diagram: ConnectionHandling module 91
F.10 Product Class Diagram: Util module 91
F.11 Product Class Diagram: Util module 92
F.12 Product Class Diagram: Util module 94
.1 Product Sequence Diagram: Handling Data 109

List of Tables

3.1

4.1
4.2

5.1

Al
A2
A3

B.1

C1
C.2
C.3

D.1
D.2
D.3
D4
D.5
D.6
D.7
D.8
D.9

Feasibility Core Question Results

Identified Riskso
Project Core Requirements

Product Modules

People relevant to the projecto
Deliverables Deadlines
Revision History

Stakeholders

Identified risks
Risk Exposure
Risk Handling 0.

Requirement F-Cellular o oL
Requirement F-OBD
Requirement F-GPSo
Requirement F-JSON
Requirement F-Time L
Requirement F-Configuration
Requirement F-SD-Data o
Requirement F-SD-Data-Discard
Requirement F-SD-Logging

D.10 Requirement F-Bluetooth-Control
D.11 Requirement NF-HTTPS o ..
D.12 Requirement NF-Performance
D.13 Requirement NF-Extendibility
D.14 Requirement NF-Flexibility,
D.15 Revision History

E.1
E.2
E.3
E4
E.5
E.6

G.1
G.2

Quality Target Metrics
Quality Target Metrics Measurements: 2018-03-31
Quality Target Metrics Measurements: 2018-04-14
Quality Target Metrics Measurements: 2018-04-28
Quality Target Metrics Measurements: 2018-04-28
Revision History

Data required to carry out live analysis
Data required to carry out live analysis

viii

List of Abbreviations

CAN
GPS
HTTPS
JSON
NTP
OBD-I1
RTOS
SIM
SSL
TLS

Controller Area Network

Global Positioning System

Hyper Text Transfer Protocol Secure
Java Script Object Notation
Network Time Protocol

On Board Diagnostics Version 2

Real Time Operating System
Subscriber Identity Module

Secure Socket Layer

Transport Layer Security

X

Glossary

Arduino

AT Commands

CAN
Cellular
connection
Cellular

module

ESP32

Freematics
ONE-+

FreeRTOS
GPS

HTTPS
JSON

Micro-
controller
NTP
OBD
RTOS

Serial Commu-
nication

SIM5360

Open-source microcontroller, basis to many small electronics
appliances

Also: Hayes Command Set. Command Language originally de-
veloped to control modem devices. Also used by the SIM5360
module to offer control to a user

Communications network to enable communication between mi-
crocontrollers without a central host computer

For the context of this project, refers exclusively to an internet
connection via mobile networks as used by cellphones.

In the context of this project, refers to an extension to the ESP32
chip with the capability of dialling into mobile networks to send
and receive data from the internet (see SIM5360)
Arduino-like low cost microcontroller with integrated WLAN
and Bluetooth connectors; although it is not actually related to
Arduino chips, it is for the purposes of this project identical and
may be referred to by this name

Freely programmable, open source OBD-II dongle based on
the ESP32 microcontroller. Capable of gathering various data,
equipped with cellular network module

An open-source RTOS designed for use on embedded devices such
as microcontrollers like the ESP 32

A system to identify a device’s current location on planet earth
using triangulation of pings broadcast by satellites

Protocol to securely transfer data between a server and a client
A human- and machine-readable notation to encode arbitrary
data

A computer system based on a single chip, often equipped with
various interfaces or I/O pins

Networking protocol to synchronize time between computer sys-
tems

Protocol and interface for communication between car and diag-
nostic hardware

Operating System designed to handle data as it is created with lit-
tle or no buffer in between. Used in time-critical applications such
as safety measures in vehicles in order to ensure instant reaction
Communication protocol in which data is sent bit by bit over
a single wire/ connection as opposed to parallel communication
which makes use of multiple wires/ connections to transmit several
bits at once

Cellular module attached to the ESP32 microcontroller at the
core of the Freematics ONE+-. Offers connectivity to cellular
networks for data transmission

SSL / TLS

Set of cryptographic protocols to secure the communication be-
tween computer systems; used for encryption in HTTPS. Both
terms are used interchangeably in this report

x1

1 Introduction

This report was created during the project carried out as part of the bachelor thesis "Trans-
mission and Analysis of Vehicle Telemetry Data Using OBD-II and Cellular Networks". It
describes the results of both the software project and the accompanying research objective.

1.1 Context

In order to fully understand the project and its intended results, it is important to know the
context in which it is being carried out: the company and the problems it is facing as well
as a brief description of the tasks intended to solve this problem. This section provides that
information, defines the graduation assignment and also briefly introduces the device that is
a key part of the project.

1.1.1 The Company

The company TAV ("Ingenieurgesellschaft Auto und Verkehr") is a German automotive en-
gineering company whose main focus is on the development and production of vehicle parts
for several major car manufacturers and automotive component suppliers. The company was
founded in 1983 in Berlin as a research institute attached to the Technical University of Berlin
and has since grown large enough to have 6700 employees all over the world with a turnover
of 734 million Euro in 2016 (see IAV, 2017).

1.1.2 The Problems

Because the testing of newly designed parts and software is a fundamental part of IAV’s
every-day business, it is important for them to streamline this process as much as possible.
A large portion of testing involves the analysis of telemetry data generated by test vehicles
in order to identify issues and their root causes as early as possible.

IAV is facing two problems in this context: The first is that considerable effort is required
to set up and install the computer systems for this job. These systems gather data from the
vehicle’s onboard diagnostic (OBD) port and briefly process it before transmitting it to a
remote server. Once data is received by this server it is analysed in more detail and stored
for later use. The setup effort delays test drives which in turn causes development times to
grow.

The second problem is that test drives are often defined by very detailed parameters, such as
what type of roads to drive for what time and distance, what speed to drive, etc. A test driver
can easily be overwhelmed by the number of parameters to keep an eye on so that they often
do not notice when a test run becomes invalid. The continuation of invalid test runs does not
yield usable results and is therefore an unneccessary expense that should be avoided.

Chapter 1. Introduction 2

1.1.3 Graduation Assignment

Based on the problems described in Section 1.1.2, the assignment for the duration of the
graduation thesis is to optimise the process of carrying out test runs. Based on the assignment,
two seperate tasks were identified which will lead to the fulfilment of the project’s aims:

First, the implementation of a software solution to run on a microncontroller-based telemetry
device. The software’s designated purpose is to read data from the OBD-II interface and
global positioning system (GPS) sensor attached to the microcontroller and transmit it to
a remote server for further analysis while encrypting all connections using Transport Layer
Security (TLS) or its predecessor Secure Sockets Layer (SSL).

Second, based on the experience gathered and knowledge gained during the design and imple-
mentation of this software, a feasibility study should then answer the question whether the
software tool can be extended to inform drivers about the status of a test drive’s parameters.

1.1.4 Freematics ONE-+

As described in Section 1.1.3, the project’s primary aim is to implement software to run
on a device capable of reading and transmitting telemetry data. This device comes in the
form of the Freematics ONE+, a device based around the ESP32 microcontroller. It provides
an OBD-II connector, a GPS sensor and a cellular module which uses a subscriber identity
module (SIM) so that data can be read and transmitted. This device was selected by IAV
before the start of the project over other candidates because it was the only candidate that
is freely programmable and offers the desired functionality (Eden, 2018).

1.2 Report Structure

This report is divided into nine chapters including the introduction. The appendix contains
documents which expand on some of the information summarised in the main content chapters.

e Planning: Summarises the project planning
e Feasibility Study: Describes work on and results of the feasibility study
e Analysis: Explains the results of the analysis phase by its individual products

e Software Design: Explains the process and decision making behind the creation of
the software design based on the results of the analysis phase

e Quality Management: Summarises how the product’s quality can be measured and
kept at the desired level

e Implementation: Describes the technologies used during the implementation phase
as well as the challenges that were faced and how they were overcome

e Validation: Summarises the results of all software and system tests as well as the final
quality measurements

e Conclusion: Analyses the results of all phases, comparing them to the original task
and drawing a conclusion

e Recommendations: Offers advice on how to work with the results of the project as
well as how to improve or complete them.

2 Planning

Because of the project’s limited duration, it was of vital importance to plan it’s execution
in advance so that all of its objectives could be completed within the given time frame. For
this reason, a project plan (see Appendix A Project Plan) was created in which the project
was clearly defined and planned ahead of time as far as possible. The following subsections
summarise the most important points made in that document.

2.1 Deliverables

Because the project was not defined in detail when it was started, the first step was to
identify what deliverables the customer expected to see upon its conclusion. This enabled
further, more detailed planning.

Within the project plan, two main deliverables were identified based on the customer’s initial
wishes:

The first deliverable was a piece of software to run on the Freematics ONE-+ that should read
telemetry data from a vehicle and transmit it to a remote analysis server. Attached to this
product, a number of documents describing and defining it would be created, including this
report:

e Project Plan
e Stakeholder Analysis

e Requirements Analysis

Quality Management Plan

Software Design Document
o Intermediate Progress Report
e Final Project report (in form of Thesis)

The second deliverable was a report on a feasibility study carried out on the topic of whether
the same device could be used to avoid the continuation of invalid test runs by notifying
drivers immediately when a test parameter can no longer be met.

Both deliverables are described in more detail in Appendix A.3.2.

2.2 Scope

In order to make sure that the project’s requirements would be met to the farthest extend
possible, it was important to clearly define its scope as early as possible to prevent bloating
and feature-creep before they occured. For this reason, the project plan clearly defined what

Chapter 2. Planning 4

is included in and what is excluded from the project’s scope as well as core scope definitions
for the related research report (see Appendix G Research Report).

Most importantly, the scope included carrying out four of the five main software project phases
(Analysis, Design, Implementation and Validation) while excluding the fifth (Maintenance) for
the first core deliverable. It also defined that, while it could be considered if time constraints
allowed it, an implementation of the software tool researched as part of the second core
deliverable was not part of the scope.

2.3 Software Development Framework

With the intention of ensuring that a high quality product would be delivered once the
project came to its conclusion, the selection of the proper framework for the project was of
vital importance. The most important criteria were to ensure that the product would be
delivered on time and that its core features (see Section 2.1) would be fully implemented
upon completion. With regard to people involved the project, the most important factor was
that the customer was an experienced software developer and project manager and as such
could be expected to be familiar with the way requirements elicitation, software design and
other mechanisms in the domain of software development work.

With these criteria in mind, the decision fell on using the traditional waterfall model instead
of an agile approach: Because of the customer’s experience, the assumption could be made
that requirements and wishes would not change significantly during the execution. This made
it possible to carry out analyses and make design decisions at the beginning of the project
without having to revisit them after each sprint.

However, regular customer communication was still deemed very important. Therefore, a
single feature was taken from agile methods: A weekly meeting to discuss progress and prob-
lems was established.

2.4 Time Planning

Based on the decisions made and knowledge gained during the clarification of scope (see
Section 2.2) and the selection of the software development framework (see Section 2.3), work
on all tasks was planned in advance at the start of the project. As decribed in the project
plan (see Appendix A Project Plan), start and finish dates for each of the project’s segments
as well as deadlines for deliverables were defined. Furthermore, a Gantt chart (see Figure A.2)
was created for to provide an easy overview over current and upcoming tasks.

3 Feasibility Study

This chapter explains the research carried out during the feasibility study as described in Sec-
tion 1.1.3 by defining the core objective and questions as well as explaining the methodologies
used and the results obtained. The full research report is available at Appendix G.

3.1 Purpose

As outlined in Section 1.1.3, the feasibility study is based on the second problem described
in Section 1.1.2: Because of very specific and precise parameters that define product test
drives, drivers are often unable to keep track of their performance and only find out that their
tests were invalid once they are completed. This causes unnecessary expenses that should be
avoided.

The general idea is that, using the same device that is already being used in the main project,
the gathering and transmission of vehicle data, could be used to automatically keep track
of parameters and warn the driver if a breach is imminent or completed. This would mean
that test drives could be aborted early, effectively reducing costs. The feasibility study’s aim
is to research whether or not carrying out this process is possible on the Freematics ONE+
with respect to hardware capabilities as well as the telemetry product in terms of software
compatibility.

3.2 Target System

After the system’s general purpose was identified, the next step was to desribe it in more
detail by defining its core tasks as well as restrictions that would apply to it.

The following core tasks were identified:

e Data Reading: Gathering of data from various sources such as the device’s GPS
sensor, OBD interface and online sources

e Data Tracking: Calculating information from read values, keeping track of minimum /
maximum values, etc.

e Data Comparison: Comparing gathered and calculated information to target values
in order to identify when parameters are fulfilled or breached

e User Interaction: In case a parameter’s value differs from target values, the test driver
should be warned about this so that the test drive can be aborted

Additionally, the system’s design would have to take two main restrictions into account:
Firstly, because it’s intended target environment is a moving vehicle, the end user will be
unable to interact with the device frequently for safety reasons. Secondly, the device’s hard-
ware limitations have to be taken into account when answering any core questions.

Chapter 3. Feasibility Study 6

3.3 Research Questions and Methodology

Based on the previously identified tasks and restrictions, the next step was to define the core
questions to answer in order to decide whether or not implementing the system is feasible.
The following core questions were identified:

1. Is it possible to gather all required data from either a sensor, an online API or another
source?

2. Is the device capable of handling the acquired data in ways suitable to handle all tasks?
3. Is there a way in which a user can interact with the device?

4. Can the device carry out the required number of data reading / tracking actions?

5. Can the system be integrated into the data transmission project as a subsystem?

These questions were derived from customer interviews carried out previously as well as anal-
ysis of some usage examples given by the customer.

Since all questions are based on whether or not the device is capable of fulfilling a given func-
tionality or providing some data, the research consists of comparing the device’s capabilities
according to its product page and specification sheets as well as experience gathered during
the execution of the main project to what is required for the live analysis.

3.4 Results

Table 3.1 gives an overview over the core questions and their results. Some answers include
remarks detailing the results.

TABLE 3.1: Feasibility Core Question Results

Number | Answer Remarks

1 Yes Some data may take considerable effort to acquire

2 Yes -

3 Yes The user cannot directly communicate with the device,
instead a bridge in form of e.g. a smartphone app is
required

4 Yes -

5) No While the software implementation of adding the analy-
sis to the main project is no issue, the device’s hardware
specifications are most likely insufficient

This shows that all but one of the core questions could be answered affirmatively. The only
answer that had to be answered with "No" was whether the proposed analysis system could
be integrated into the existing telemetry transmission project’s solution.

In conclusion this means that, although parts of the proposed system may take considerable
effort to implement, it can be implemented as a stand-alone solution. The addition of this
proposed system to the main project’s software solution however is most likely infeasible due
to performance limitations.

4 Analysis

After the initial project planning, the next step was to carry out the analyses that were defined
as deliverables. The following chapters briefly summarise each of the documents describing
the analysis results. In accordance with the pre-defined deliverables (see Section 2.1), the core
milestones for this phase were the stakeholder analysis, the risk assessment and a requirements
analysis.

4.1 Stakeholder Analysis

In order to identify and classify people and parties relevant to the project, a stakeholder
analysis was carried out. This helped to identify and classify stakeholders, who have interest
in and/ or power over the project and its outcomes so that it was clear how to handle each
of them during the execution.

Project
Supervisor

Company
Project
Team

Power

Head of
Department

Interest

FIGURE 4.1: Stakeholder Power/ Interest Grid

After a number of techniques were used to identify stakeholders, their individual power over
and interest in the project was plotted in a power/ interest grid. This made it easier to judge
what the best course of action for handling each of the stakeholders would be over the course
of the project. Figure 4.1 shows this grid. If the question of how a party should be handled
during the project comes up, looking up their position in the grid gives a simple answer.

The full stakeholder analysis is described in Appendix B Stakeholder Analysis.

Chapter 4. Analysis 8

4.2 Risk Analysis

Because the project is of high importance, it was important that no major problems would
impact it, threatening delays, suspensions or even a complete cancellation. In order to be as
well-prepared as possible, a risk analysis was carried out early during the analysis phase. After
risks were identified, each was individually analysed by estimating its likeliness of occuring
as well as the strength of the impact it could possibly have on the project. From these two

values, the total risk exposure was calculated. Table 4.1 describes the identified risks.

TABLE 4.1: Identified Risks

+# Condition Consequence
1 Insufficient time to finish project Not all requirements can be re-
alised
2 Device does not offer required func- | Not all requirements can be re-
tionality alised
3 Additional requirements appear | More time is required to meet all
during project execution requirements
4 A requirement takes longer to im- | More time is required to meet all
plement than anticipated requirements
) Hardware programming causes dif- | Some core features may remain un-
ficulties/ delays fulfilled/ take longer so that other
requirements cannot be worked on

In order to identify large risks more easily, they were projected into a graph plotting their
impact over their probability, see Figure 4.2. This way, highly dangerous risks could be
identified at a glance. As the graph shows, all risk are located within the left column, meaning
they are unlikely to occur. Although some risks could have a high impact on the project, none
reside in to top-right quadrant with high risk and impact, meaning that the project is relatively
safe.

10
9
8
7 °
o1
= 6 °
g2 5 .2
3 ®
e4
2
1 5
0
0 0,2 0,4 0,6 0,8 1

Probabhility

FI1GURE 4.2: Risk Matrix

The final step was then to define mitigation actions, so that any potential impact would be
less severe and contingency actions, so that the project can continue on its path without large

Chapter 4. Analysis 9

delays in case a risk does occur. Appendix C Risk Analysis describes the full risk analysis
and its results.

4.3 Requirements Analysis

After stakeholders and risks were identified, the final analysis step was to identify and evaluate
requirements. Because the basic premise of the project, the gathering and transmission of
vehicle telemetry data, was already well-established, the requirements analysis focussed more
on specific parameters to this task. This subsection briefly summarises the results of the full
analysis requirements which can be read at Appendix D Requirements Analysis.

4.3.1 Requirements Elicitation

The first step of the requirements analysis was to identify requirements for further analysis.
This was realised by combining a number of established techniques: At first, even though the
project’s basic intentions were well-known, they were confirmed by holding a short interview
with the project spokesperson. After some time during which other project-related tasks such
as the risk assessment were carried out, another interview session was held with the same
spokesperson in order to identify more detailed requirements, such as how many times per
second data should be gathered from the vehicle and sent to the remote server for analysis.
Another example is the JavaScript Object Notation (JSON) specification that should be used
for communication with the server. In Table 4.2, the project’s four core requirements have
been listed.

TABLE 4.2: Project Core Requirements

Requirement 1D Description

F-Cellular The device should use a mobile internet connection to
transmit data to remote servers

F-OBD The device should read all available data from the vehicle
it is attached to

F-GPS The device should gather GPS data and link it to other
data

F-JSON The device should encode all gathered data in JSON
format, according to a specification

In addition to these core requirements, several more functional and nonfunctional requirements
were identified and described (see Appendix D.2).

4.3.2 Requirements Evaluation

After the requirements were identified, the next step was the evaluation of functional require-
ments based on value they would add to the project as well as the cost they would require
to be realised. Because no objective numerical value could be identified for the requirements,
their relative value was identified by the customer with the help of a value comparison matrix.
This technique calculates ther percentage of value each requirements adds to the project by
calculating it from numerical statements such as "Requirement A is 5 times as important as
Requirement B". Because of the project’s small scale, the requirements’ cost was expressed
in the number of days of work they would require to be implemented.

Chapter 4. Analysis 10

In Figure 4.3, the results of this evaluation are visualised. The x-axis shows cost of implemen-
tation while the y-axis visualises added value for each requirement. By splitting the graph
into three sections, requirements are grouped by high, medium and low priority.

25
High
priority .. ® F-Cellular
20 Medium
priority F-OBD
F-GPS
15
g F-JSON
g ® F-Configuration
10
® F-SD-Data
® F-SD-Data-Discard
5
Low ® F-SD-Logging
g priority @ F-Bluetooth-Control
0
0 2 4 6 8 10 17 @FTime

FIGURE 4.3: Cost/ Value Graph of Project Requirements

As explained in the requirements analysis document, the customer’s decision was to implement
the requirements F-Cellular, F-OBD, F-GPS and F-JSON before the others regardless of their
priority group as they make up the project’s core requirements. Furthermore, none of the other
functional requirements were considered a core task, therefore the project would be considered
as completed without them.

11

5 Software Design

The next step after completing the analysis steps described in the previous chapter was
to design the software product based on the new information available. After gaining a
rough understanding of the system’s environment with the help of a domain model (see
Figure F.1), this consisted of first deriving some core design aims from the non-functional
requirements gathered as well as listing design constraints that would have to be taken into
account. Afterwards, the actual software design was created in terms of basic structure of
the solution: All functionality needed to be contained in classes and modules according to
the design aims and constraints. Finally, a rough design concerning the distribution of tasks
over the device’s two processor cores was created. The following subsections explain these
results and the reasoning behind them based on some core examples; the original document
is available in Appendix F Software Design Document.

5.1 Design Parameters

As first part of creating a design for the software to be implemented, a number of core design
aims were derived from the non-functional requirements identified during the requirements
analysis. Additionally, design constraints were identified from hardware constraints. All
design decisions then had to be made with these aims and constraints as a guideline.

5.1.1 Design Aims

e Ease of implementation: Where possible, design choices should be made that make
the development and later maintenance of the software easier

o Extendibility: The software should be created with future expansions in mind. Specif-
ically, additional sensors or methods of handling data could be added (see Table D.13)

e Flexibility: The software should be able to react to environment and system changes
flexibly: For example, some data source may suddenly become unavailable or connection
to cellular networks could be lost (see Table D.14)

e Performance: All functionality should be designed and implemented with the thought
of achieving reading and transmission rates as high as possible (see Table D.12)

5.1.2 Design Constraints
While the design aims listed above were targets set for the design by the project team and its
stakeholders, the design constraints described here are hard limits set by hardware limitations:

e Available flash memory: The ESP32 chip has 4 Megabytes of memory available for
program space and 520 Kilobytes of RAM (see Freematics, No date(b))

Chapter 5. Software Design 12

e Available processing power: The ESP32 chip is based on a dual core processor that
runs at a frequency of 240 MHz (see Freematics, No date(b))

5.2 Basic Structure

Based on the design aims and constraints identified in Section 5.1, the next step was to create
a general overview over the product’s basic structure. This subsection explains the reasoning
behind the decisions made for this purpose.

5.2.1 Setup and Loops

Although similarly to desktop applications, the firmware running on the ESP32 chip is ini-
tialised with a main() function, the framework is designed so that user-created programs
consist of two basic functions: The setup() function which is called once and the loop()
function which is called in an infinite loop (see me-no-dev, 2017a). This is based on the
design commonly used in Arduino systems (see Arduino, No date(b)) that makes it easy to
separate setup tasks such as initialising serial communication or loading modules from the
actual application logic.

This design however is based on the assumption that the program running on the chip only
uses a single thread, most likely because the majority of Arduino devices do not offer multicore
processing (see Arduino, No date(a)).

Because the ESP32 microcontroller this program will run on contains a dual core processor
(see Espressif Systems, 2018), this basic structure needed to be adapted: Instead of running a
single loop task, two functions (readerLoop() and handlerLoop()) will be running in infinite
loops simultaneously on the two cores. This makes it possible to utilise all available computing
power to the full extent, effectively increasing performance. The two tasks are then connected
to each other by using a threadsafe queue as data buffer (see Figure 1.1) into which the
readerLoop() task can write data and the handlerLoop() task can extract data to work on
from. This seperation of tasks over two threads also had the advantage of preventing multiple
accesses to the same resource.

5.2.2 Modules

With the intention of keeping in line with the design aims to keep the product easy to imple-
ment and maintain as well retaining the flexibility to react to environment or implementation
changes, the decision was made to divide the system up into modules, each of which would
have a clearly defined task to fulfill. An important aspect of this was that modules should be
independent from each other so that changes in one would have as little effect on the others
as possible.

This made sure that during development, unfinished modules could be simulated with dummy
implementations implementing the same designed interface in order to test finished modules.
Furthermore, implementation changes to any module will not affect other modules in future
refactoring or maintenance work.

The decision was then made to create modules based on the basic tasks that need to be
fulfilled in the system (see Table 5.1).

Chapter 5. Software Design 13

TABLE 5.1: Product Modules

Module Tasks

DataReading Gathering of data from OBD interface and GPS sensor
DataKeeping Functionality to represent data and contain it in memory
DataHandling Analysis and preparation of data for transmission

ConnectionHandling | Interfacing connection technologies (Cellular networks, WLAN,
Bluetooth) as well as SD card writing

Logging Centralized logging of notifications, warning and errors to vari-
ous targets

Util Contains configuration files, global constants, globally required
functions as well as the functionality to keep system time up-
dated

5.3 Module Design

This subsection describes in more detail the choices made when designing the overall structure
of the solution as well as two of the most important modules (DataKeeping and DataHandling).
Design decisions behind the other modules can be read about in Appendix F Software Design
Document !.

5.3.1 Inter-Module Communication Design

Since the basic premise of the design behind this product is that there are two tasks that take
the role of producer and consumer (see subsection 5.2.1), it was neccessary to outline a way in
which these two tasks could communicate with each other to share data. A number of ways
to implement this functionality were considered.

The first solution to this problem would have been to extend the DataKeeping module’s func-
tionality so that it would enable interthread communication, for example by means of synchro-
nized collections which would contain data. In doing so, the DataReading and DataHandling
modules would however be in danger of being affected by changes to the implementation of
the DataKeeping module.

A second option would have been to design the DataReading module to create an interrupt to
the microcontroller’s processor upon which the DataHandling module would start its work.

Finally, the decision was made to use a global instance of a threadsafe queue provided by
the real time operating system (RT'OS) running on the chip to write data into and read data
from as required. The modules would simply be instantiated with a reference to this queue;
The DataReading module would then write into it while the DataHandling would periodically
check for new data and handle it. This was considered the best solution because it would
allow the two modules to operate completely separated from each other which guaranteed that
neither would be influenced by changes to the other while also being the easiest to implement
and maintain.

The class diagram in Figure I.1 visualises the connections between the modules via the
RTOSQueue instance.

!The (partial) class diagrams depicted on the following pages are not exhaustive; trivial members and
relationships have been omitted in favour of readibility. All UML diagrams were created in the style defined
by Martin Fowler in his book "UML Distilled - Third Edition" (see Fowler, 2003). Colour filling is not
according to UML standard but helps to improve readibility.

Chapter 5. Software Design 14

5.3.2 DataKeeping Module

The DataKeeping module’s purpose is to provide a framework to contain data in memory so
that it can easily be shared between the two tasks.

Structural Design

Based on the aims and constraints identified earlier, the core focus behind the design of the
DataKeeping module was to make sure that if any new sensors were added to the system
at a later point, this could easily be done with minimal changes. Furthermore, the module
should make sure that the system can continue working without impact if any data source
is suddenly unavailable. Finally, based on requirement F-JSON (see Table 4.2), the module
should also encode contained data to JSON format while keeping the design aim of simplicity
in mind.

To begin with, a design had to be made which would mitigate issues originating from missing
data.

The very first, and simplest, solution would have been to save all data in a single object in
predetermined class members into which the DataReading module would write. By setting
flags for the presence of each member or groups of members, the getJSON() method could
have skipped those with no or invalid data, creating a valid JSON string. This idea was not
implemented because it would have resulted in a single bloated class which would have made
it difficult to maintain the module and adapt it to system changes.

The next iteration of the design was to implement a class for each type of data (GPS, OBD,
etc.). The reading module would then create these and push them into the RTOSQueue for
the DataHandling module to handle. This design had the advantage that maintenance was
simplified in comparison to the first version: If a new data source was added, a new class
could simply be added. Furthermore, if the relevant data source became unavailable, the
object could simply not be pushed to the queue, eliminating the need to check presence and
validity on the consumer side. However, it had one big flaw: Because the client task would
be receiving objects one by one, it was forced to handle them individually. This meant that
instead of only handling one object per reading cycle, it would handle as many objects as data
sources were implemented. This was assumed to cause performance problems. Furthermore
the object’s type would be unknown which would go against C++ type safety rules.

Finally the decision was made to create a more complex solution to these problems:

By creating an AbstractDataContainer interface which classes like 0BDDataContainer and
GPSDataContainer can then implement, the DataContainer class can aggregate references
to them using their supertype instead of knowing about them by concrete references to their
implementation. This way, when the getJSON() method is called, the DataContainer class
can iterate over this list and combine the JSON strings obtained from each container to a full
string. Because each JSON string is valid on its own, no issues arise if the containers for one
or more data sources are not present at any given time.

This also means that a new data source can be represented in the DataKeeping module simply
by implementing the corresponding AbstractDataContainer subtype.

Another design choice made for this module was to implement the Composite design pattern
as described by the well-known "Gang of Four" (see Gamma et al., 1994): By making the
DataContainer class implement the AbstractDataContainer interface and simultaneously

Chapter 5. Software Design 15

aggregate instances of the same interface’s subtypes, it becomes the component object in the
pattern while the other subtypes represent leaf nodes.

This has the advantage that if, for any reason, the handling of data should take longer than
normally expected, data reading can continue by appending DataContainer objects to the
queue described in subsection 5.3.1 while the DataHandling module recovers. Once it is back
up to full speed, it can then read all available DataContainer objects from the queue at once
and add them to a new encapsulating DataContainer object from which the JSON string for
all contained data can then be obtained and handled at once.

Figure 5.1 visualises the final result of the design made for the DataKeeping module.

DataKeeping

1

0..n
0.n (% «interface» AbstractDataContainer

DataContainer
- std::vector<AbstractDataContainer*> : containers ="

+ getJSON() : std::string

: OBDDataContainer
+ addData(AbstractDataContainer*) : void ! -
SRR - OBDValues : mapx<int, float>

+ addMeasurement(int, float) : void

GPSDataContainer

- date : unsigned long [get] .
- time : unsigned long [get] SensorsDataContainer

- lat : long [get] i~---1 - SensorsValues : map<int, float>
- lon: long [get] !

- alt : int [get]

- spd : unsigned byte [get]
- sat : unsigned byte [get]
- heading : int [get]

copooocoocooooa

+ addMeasurement(int, float) : void

FI1GURE 5.1: Product Class Diagram: DataKeeping Module

Behavioural Design

In order to fulfill requirement F-JSON, the system needs to be able to encode all gathered
data into the JSON format. As described in subsection 5.3.2, this falls into the DataKeeping
module’s area of responsibility.

Upon calling of the getJSON() method on a DataContainer object, a new string which
will contain the result is created. Afterwards the object iterates over its aggregation of
AbstractDataContainer references: Because the module is implemented in the composite
pattern (see subsection 5.3.2) each can either be another DataContainer object or an object
containing concrete data such as an 0BDDataContainer. By calling the getJSON() on either, a
string is returned representing a data set. This is then appended to the result string. Finally,
the result string is returned as visualised by Figure 5.2.

Chapter 5. Software Design 16

:DataContainer| |result:std::string xdc:AbstractDataContainer

getJSON()
- T1 new std::string
......Fesult

loop/ [for each AbstractDataContainer]
getJSON() ;E
A jonSting L
append : :

result

FIGURE 5.2: Product Sequence Diagram: Encoding Data in JSON

5.3.3 DataHandling Module

The DataHandling module’s purpose is to read data from the RTOSQueue instance and operate
on it in different ways, such as analysing it or transmitting it to a remote server.

Structural Design

For this module, the most important design aims were extendibility and flexibility as well as
performance: New handling methods should be easy to add to the system, but the system
should also be able to deal with the sudden unavailability of one or more handling methods
if, for example, the connection to cellular networks was lost. All this should be possible while
fulfilling requirement NF-Performance. Finally, the module should provide a simple interface
for the handlerLoop() main function to call.

The first decision that had to be made based on these criteria was how to implement the
process of actual data handling: While it would have been possible to implement everything
in a single method in one class, creating only a very small memory footprint and a simple
interface, maintenance in this design would have taken considerable effort.

Another possible solution that was considered was to implement individual classes for each
type of handling so that a client could call them in sequence. However, this did not fulfill the
design aim of providing a simple interface.

The final version of the design consisted of the DataHandlerFacade class which would be the
only part of the module a client would interact with: Upon calling the
handledata() method, the facade would iterate over its internal list of data handlers. By
creating the DataHandler interface and making all concrete handlers implement it, the facade
can iterate over a collection of these without knowing their concrete implementation and sup-
ply the DataContainer object it received to them. The data handlers can then use the data
in a fashion most fitting to their purpose: For example, the TransmissionDataHandler only
generates the JSON string representing the data and forwards it to the CellularHandler for
transmission while the AnalysisDataHandler cares about the actual data itself and analyses
it.

Chapter 5. Software Design 17

This design also made it possible to deal with unavailable handling targets: If one of the
handlers was unable to work for any reason, the DataReaderFacade could simply skip over it.

Figure 5.3 visualises the DataHandling module’s final design.

DataHandling
L 0..n Q/

DataHandlerFacade «interface» DataHandler

- handlers : std::vector<DataHandler*>
- dataQueue : QueueHandle_t

+ handleData(DataContainer*) : void

+ DataHandlerFacade(QueueHandle_t)
+ handleData(DataContainer*) : void A

AnalysisDataHandler TransmissionDataHandler SDDataHandler

FIGURE 5.3: Product Class Diagram: DataHandling Module

Behavioural Design

The last step in the line of actions the system carries out is the handling of data. The
handling tasks calls the watchQueue() method on the DataHandlerFacade object with ev-
ery iteration. The object then checks whether any DataContainer objects are available in
the RTOSQueue and receives them. It then iterates over its list of DataHandler subtypes,
calling the handleData() method on them with the received DataContainer as parameter.
The TransmissionDataHandler for example will then call the hand1eJSON() method on the
CellularHandler. Finally, the DataContainer object is deleted and the process is finished.

Figure 5.4 shows the handling process using the TransmissionDataHandler as an example.

5.3.4 Time Keeping

Although it is not one of the core modules, the decisions behind the design of the time keeping
functionality integrated into the system were vital to its success.

Because it is based on a microncontroller with very minimal equipment, the device the product
will be deployed to does not have readily available functionality to get the current time and is
also unable to keep this time up to date between power cycles. However, both the JSON format
transmitted to the remote analysis server and for better logging, timestamps are essential. For
this reason, the decision was made to add functionality to the system which should acquire
current time at startup and keep track of it using the microprocessors clock cycle count.

At this point, the decision had to be made what time source should be used to acquire the
initial startup time. The choices were either to use the built-in GPS antenna to acquire time
over GPS which has an accuracy of around 100 nanoseconds (see Dana and Penrod, 1990)
relative to UTC or to use the cellular module to acquire time over the network time protocol
(NTP) which uses remote servers to get time information. Depending on network speeds and
latency, it can be accurate to around 50 milliseconds (see Windl et al., 2006) to the time
source server.

Chapter 5. Software Design 18

:DataHandlerFacade :RTOSQueue :TransmissionDataHandler :CellularHandler dc:DataContainer

_watchQueue()Ai uxQueueMessages
d " Waiting()

at [messageCount > 1] - new DataContainer()

e do : LJ
Sl S e .
loop /| | [for messageCount tir‘:nes]

xQueueReceive() _ |

idc:DataContainer

| addData(idc) | i
e J
[else]

xQueueReceive()
dc

o . :
F handleData(dc) |

: : handleJSON :

handle:Data(dc) ot (dc->getJSON) ‘i

R , |
<ot ' : '

! x

FIGURE 5.4: Product Sequence Diagram: Handling Data

Since an accuracy of 50 milliseconds is sufficient for this purpose and because the cellular
module is more likely to be able to receive a signal at time of startup than the GPS antenna
for a number of reasons?, the decision was made to use NTP to acquire the initial time upon
setup.

5.4 Multi Threading Design

As described in Section 5.2.1, the products main functionality of reading and transmitting
data was designed two be separated over the microcontroller’s two processing cores: This
seperation was decided upon in order to fully utilise all available computing power offered by
the microcontroller.

The decision that had to be made was into how many threads each task should be divided.
The choices were to either create only two tasks (one for reading data and one for handling
data) or to also split up the handling of data into individual threads for each target: for

2Because the device is only equipped with a very weak GPS antenna, it needs good exposure to the sky in
order to work properly (see Huang, 2017). While experiments show that placing it behind a car’s windshield
works fine, the customer expects people to forget about this causing issues when attempting to get current
time.

Chapter 5. Software Design 19

example, one thread might be responsible for transmitting data over cellular networks while
another would handle writing data to an SD card.

Since the basic structure of the program had already been decided on, the main considerations
for this decision were the (positive or negative) impact on performance as well as the ease of
implementation and extendibility. The final decision was to only use two tasks in this initial
version of the product because the performance improvement to be gained from splitting up
the handling task further was estimated to be negligible as still only one of these tasks could
be executed simultaneously to the reading task. With that in mind, the decision was also
made to keep a possible future change to this process in mind during the implementation
phase and, where possible, facilitate the later refactoring.

5.5 Test Design

The final step of the design phase was to decide on a strategy to test implemented results.
This included code tests with the intention of verifying that all code segments worked as
intended as well as system tests that should verify that all code segments work together well.

5.5.1 Code Tests

The first decision that had to be made in this concext was how individual code segments
should be tested. An imporant aspect to the decision that was eventually made is the fact
that large portions of the project’s functionality depend on hardware interactions such as
reading and transmitting data. While these functionalities could be mocked when testing
other modules depending on them, they themselves would be difficult or even impossible to
test in the form of unit tests.

For this reason, the decision was made that, where feasible within a reasonable time frame,
all functionality should be tested with the help of unit tests that could be run whenever the
implementation behind their targets was changed or updated. This also allowed for test-driven
development to be used during the implementation phase: By creating tests that define the
desired functionality of functions or methods before their real implementation, the target is
more clearly defined and can more easily be worked towards.

All other parts of the product, that could not be tested with unit tests, such as reading data
from the OBD interface, should be verified using manual tests such as comparing the output
to information gathered from the device’s environment (e.g. reading speed from the device
and comparing it to the vehicle’s tachometer).

5.5.2 System Tests

After code tests were decided upon, the next step was to design how the full system should
be tested after its completion: This was important to make sure that no memory leaks or
errors in the interaction between modules had been introduced. Based on time and resource
constraints, no full testing suite could be obtained or implemented for this purpose, therefore
the decision was made to carry out integration tests manually: In these, the device should
be used as it would in its intended environment while logging errors and warnings. All logs
could then later be analysed for problems.

20

6 Quality Management

This chapter describes the steps taken and actions defined in order to maintain high quality
standards throughout the project. The full quality management document describing every
part in more detail is available in Appendix E. The document was loosely based on the
Standard for Software Quality Assurance Plans published by the Institute of Eletrical and
Electronics Engineers (see IEEE, 1998). A full implementation of the standard was not
considered to result in a net benefit to the project with respect to time and quality standards
due to the project’s small scope and limited time frame. In order to achieve and maintain a
high standard of quality in the project’s results, several tasks had to be fulfilled. The sections
below list these tasks and their results.

6.1 Quality Management Approach

First, standards and practices to follow during the implementation had to be defined. This
consisted of standards to adhere to when writing source code (see Appendix E.3.1) and prac-
tices such as guidelines regarding the usage of version control and testing (see Appendix E.3.2).

Since the project’s scope and time frame are limited, the selection criteria for all standards
and practices were very simple: If a standard or practice already existed in the company, such
as using the company-internal git repositories for version control, it was taken over. If none
existed yet, the newly designed standards should be simple and easy to follow in order avoid
unnecessary complications in development.

6.2 Quality Control

As a second step, some key metrics were to defined in order to make the quantification of
quality possible:

e Time required for one iteration of reading data
e Time required for one iteration of handling data
e Time required by the system for startup and initialisation

For each metric, an acceptable value as well as a target value were defined. By calculating a
normalised score from the acceptable and target values as well as measured values with the
help of two formulas, an easy overview over the system’s performance could be gained.

The decision was made to take a measurement of the system’s performance bi-weekly during
which improvements or declines in the quality score could be identified and analysed. Fur-
thermore, the development of all scores over the course of the project should be visualised at
the end of the project.

21

7 Implementation

This chapter summarises the work carried out during the implementation phase of the project.
Since all implementation is based on the designs made earlier (see Chapter 5), most of the work
in this phase was very straightforward. The following subsections give a brief introduction to
the technologies used in the product and also describe challenges that were encountered and
how they were overcome or worked around.

7.1 New Technologies

Although it was possible to apply known techniques during the analysis and design phases,
for the implementation phase, a number of new and unfamiliar technologies and concepts had
to be researched and understood. This section lists and explains them.

7.1.1 Serial Communication

Because microcontrollers are usually limited with respect to both computing power and avail-
able interfaces, the method of choice for communication with external devices is often a simple
serial interface: While normal desktop applications could make use of e.g. network sockets
to transmit data or commands to external clients, this method is unavailable on most micro-
controllers and very impracticable in the specific case of the ESP32. For reasons of cost and
simplicity, serial communication is often preferred for microcontrollers (see Jimb0, No date).

By transmitting bytes between the two connected devices, commands or data can be ex-
changed. In this project specifically, it was used to transmit status and debug messages from
the ESP32 to any external client and to push commands to the cellular module.

7.1.2 Cellular Module Control: AT Commands

As one of the core requirements for the product was to make use of the cellular module
attached to the microcontroller at the core of the telemetry device to transmit data, the
control of this module was of high importance.

The control interface offered by the module are AT commands that are received over a serial
interface. After submitting the character sequence AT+ (short for "attention") to the module,
it expects an incoming command and parameters'. Afterwards, the actual command is sent
(e.g. CREG for network registration). After the command itself has been transmitted, the
execution is started with the transmission of a carriage return character. The client should
then wait for a response from the module on whether or not the command was successful in
order to decide upon how to proceed.

"While commands with a different syntax exist, these are not relevant to this project and will therefore be
disregarded.

Chapter 7. Implementation 22

In addition to these commands, small Lua scripts can be installed and run on the module.
Although they offer the same functionality as AT commands?, they also offer a fully fledged
programming language instead of commands, making development easier. Because Lua scripts
are independent from the microcontroller host, there is also no need to wait for answers
between commands.

7.2 Challenges

Despite the fact that careful consideration went into the planning and design of the prod-
uct, some issues were identified during the implementation phase. The following subsections
describe the problem behind each of them and how they were solved or worked around.

7.2.1 Memory Management

Although it was clear from the beginning that hardware limitations would have an influence
on the project’s design and implementation (see Section 5.1), the full extent of limitations only
became clear at a later point. With all libraries and code loaded, the free heap size at the start
of setup was around 215 KB. After both tasks with a stack size of 15 KB each were created and
all modules loaded, only around 170 KB remained available for data, although the decision
was made to further restrict it to 150 KB in order to account for memory fragmentation and
miscalculations.

Furthermore, experiments showed that with data for all 196 OBD IDs and a full set of GPS
data contained in it, a DataContainer object takes up slightly more than 8.1 KB, meaning
that a maximum of 18 could exist in the assigned memory block before the device would
crash or run into undefined behaviour. Because the RTOSQueue responsible for facilitating the
transmission of DataContainer objects from the reading task to the handling task does not
contain the objects themselves but rather pointers to them and because the objects may vary
in size, the required memory can not be allocated upon system startup.

With this information in mind, the decision was made to limit the number of
DataContainer objects that could be stored in the RTOSQueue to 16: If for some reason
the handling task cannot keep up with the reading task’s performance, there is a small buffer
to give it an opportunity to catch up, but the buffer is still small enough to be written to
its maximum size without threatening to consume more than the allowed amount of system
memory. In case the buffer was not enough, all newly read data would be discarded while
logging the incident.

The number 16 was chosen because two objects should be able to exist outside of the queue:
One that is currently being created and one that is currently being handled. After it has been
handled, each object will be deleted, freeing up the memory for new data. In sum, the 18
objects fill the 150 KB limit almost perfectly.

7.2.2 AT Command Implementation

As described in Section 7.1.2; the cellular module attached to the ESP32 microchip at the core
of the telemetry device can be controlled by AT commands. While this offers a very concise

2While this is not confirmed anywhere in the module’s documentation, the similarities between parameters
and return values of AT commands and Lua libraries seem to hint that the hardware functionalities offered to
Lua scripts are simple wrappers to AT commands.

Chapter 7. Implementation 23

interface, implementing functionality with these commands turned out to be more difficult
than initially expected for four main reasons:

The first reason is the lack of clear documentation and examples: Although an exhaustive
documentation to the commands and their parameters exists (see SIMCom, 2017a), it is flawed
in important ways: While all individual commands are explained in detail, the interaction
between them is often not explained. For example, the command AT+CREG to register the
device to a network must be called before AT+CGREG to register to a GPRS network, however
this is not mentioned in the documentation.

Secondly, error handling with AT commands is nearly non-existent: While some of the com-
mands provide basic information in case of an error (for example the AT+CHTTPSSEND com-
mand, which sends an HTTPS request, informs about the type of error that has occured
(see SIMCom, 2017b), others, such as the AT+CSSLLOADCK command to load certificate files
only return the string "OK" or "ERROR" as feedback. This made troubleshooting and error
finding very difficult.

The third reason is that there is little to no information available from people or companies
that have worked through similar issues: Presumably this is because the hardware itself is
not very commonly used and because it is predominantly used in corporate projects, whose
owners are reluctant to share information or experience online. IAV has not worked with the
technology in question before so that no help or guidance was available from company-internal
sources either.

Finally, and most significantly, the use of AT commands requires a client to repeatedly wait for
feedback from the module in order to verify the success of the command. No documentation
exists for a recommended interval between commands, but experiments show that delays of
less than 50 milliseconds between commands can cause issues with incompletely transmitted
requests or responses®. Since establishing and maintaining connections for the transmission of
data requires a significant number of commands in succession, this would result in a negative
performance impact.

In order to work around these issues, the decision was made to make use of the module’s
ability to internally run Lua scripts for the transmission of data. By doing this, responsibility
was transferred away from the microcontroller and onto the cellular module itself.

More specifically, the Lua script’s responsibility is to check for files in the module’s file system
that contain the data to transmit. The content of these files is then read and transmitted.
The microcontroller’s responsibility is now only to gather data and write it into the module’s
file system. This has the advantage that instead of at minimum three commands (opening a
network session, transmitting data and checking for a response), only one has to be called by
the microcontroller for the transmission of data to the cellular module’s file system. Further-
more the module’s flash storage now acts as a second, larger data buffer. Figure 7.1 visualises
these interactions between the device components.

3The reason for these issues is unknown. With the transmission rate of 115200 baud (see SIMCom, 2017c)
and approximately 50 bytes per command, around 4 ms should theoretically be enough (400 bytes / 115200
baud ~ 0,0034 seconds) to transmit commands with no issues.

Chapter 7. Implementation 24

Freematics ONE+) SIM5360)
Data Analysis

Server

ESP32
Microcontroller

File System

T
reads Lwrites into via } ? sends data to
data AT commands

from reads data from
V’gv |
LUA script
OBD GPS
interface sensor

FIGURE 7.1: Hardware/ Software Interactions on the Target Device

7.2.3 Task Timing

As described in Section 5.4, the system’s two core tasks are designed to be split over the
device’s two processing cores: While one core handles the reading of data, the second checks
for the presence of data in the RTOS Queue (see Section 5.3.1) and handles it.

Because of insufficient knowledge at the time, two major issues related to tasks were introduced
to the system by this design.

The first issue is that by deleting the task carrying out the loop() function and replacing
it with a custom task each for the readerLoop() and handlerLoop() functions (see Sec-
tion 5.2.1), an important functionality was also deleted:

In order to track the time in microsends that has elapsed since the system was powered up,
the micros () function divides the number of completed processor clock cycles by the clock’s
frequency. In order to prevent premature overflow of this value caused by the processor’s
relatively high clock speed, the micros () function needs to be called approximately every 17
seconds * in order to account for the number of times the count has overflown (see me-no-dev,
2017b). This is normally done after every call of the loop() function by the main task (see
me-no-dev, 2017a). By deleting this task however, the micros() function is also no longer
being called regularly. In order to account for this, the function had to be included into the
custom tasks. Because the reading tasks was assumed to be less likely to stall for an extended
period of time, it was placed in the readerLoop() function.

The second issue is caused by running both tasks in infinite loops simultaneously: Because
neither task leaves the "Running" state, no other task of lower priority can ever be executed.
This also affects the idle task created by the system framework on startup, whose responsibility
is to clean up kernel resources whenever a task is deleted (see FreeRTOS, 2017a). Although
currently, no tasks are being deleted in the system, the design aim of extendibility still counts
during the implementation phase. As mentioned in Section 5.4, a possible future change to
the system could be the introduction of individual tasks for each data handling type. In order
to facilitate this, the decision was made to prevent the starvation of the idle task.

This was realised by limiting the number of times each task could be executed per second
and waiting for the next allocated time chunk if it exited earlier. This way, both tasks would

*(Unsigned integer maximum value [4.294.967.296] / clock speed in Hz [240.000.000] ~ 17.89)

0 O Ui W N+

e el el el el el e
—_ O © 00O Uik WD H-=OO

Chapter 7. Implementation 25

spend some time in the "Blocked" state, allowing the idle task to run. At the same time,
the decision was made to delay the handling task by slightly more than half a time chunk
upon creation so that the two tasks do not run simultaneously but only interlap slightly. This
ensures that at most times, at least one of the processing cores is idling. Figure 7.2 roguhly
visualises the distribution of tasks over the two processing cores.

r Data Handling

Core 1 Idle

Core 0

f — Data Reading

Time

v

FI1GURE 7.2: Thread Diagram

The source code listing below shows the readerLoop() function that represents the reading
task as well as some related functionality. In line 6, the length of the reading time chunk in
milliseconds is caculated from the configured data reading rate.

Lines 8 to 21 contain the actual task functionality: After taking a note of the start time, the
micros() function is called in order to account for the processor cycle count overflow. After
that, the DataReaderFacade is called to obtain new data. After this is completed, the amount
of time left in the current time chunk is calculated so that the task can idle until this point
in time is reached (line 18). If the time chunk has already been left, a warning is logged.

Finally, after the loop is exited, the task deletes itself in order to prepare for graceful shutdown.

// this is initialised in the setup() function
DataReaderFacade* readerFacade;
LoggingFacade* loggingFacade;

// calculate time chunk length in milliseconds from count per second
int dataReadingTargetDelay = 1000 / DATA_READING_RATE;

void readerLoop(void* parameter) {

while (working) { // set to false for graceful shutdown
int start = millis();
micros(); // prevent microsend overflow
readerFacade->collectData(); // actual application logic

int millisToWait = dataReadingTargetDelay - (millis() - start);
if (millisToWait < 0) {
loggingFacade->logWarning("Data reading frame skips!");

continue;
}
delay(millisToWait); // wait for the next time chunk
}
vTaskDelete (NULL) ; // delete this task

Chapter 7. Implementation 26

7.2.4 Certificate Installation

In order to establish a TLS-encrypted connection to the remote analysis server, certificates
and key files had to be installed onto the cellular module. Because the software provided by
the manufacturer to acess the module’s file system refused to work in combination with the
microcontroller over which all communication between PC and module had to be bridged,
a custom solution had to be implemented. This was realised in the form of a python script
that reads the selected files and transmits them to the module via the serial connection. By
calculating a checksum from the original file and the transmitted file, a successful transmission
can be ensured.

7.2.5 Certificate Usage

Finally, a problem was encountered when implementing the transmission of data from the
device to the remote analysis server: Attempting to load and use installed TLS certificates
results in an error. This subsection describes the problem and all attempted solutions in
detail.

Problem Description

In order to fulfill the requirement NF-HTTPS, an encrypted connection has to be established
to TAV’s remote analysis server using the cellular module’s HT'TPS functionality. For reasons
of data security and integrity, a two-way authenticated connection is used, meaning that
not only the server’s certificate needs to be verified but also a client certificate needs to be
transmitted to the server for verification.

The first step to realise this functionality was the installation of certificate files to the cellular
module’s internal flash storage (see Section 7.2.4). After this was completed, the next step was
to initiate an encrypted connection to the server using these certificate files. After selecting
the certificate files to use, they then need to be loaded using the AT+CSSLLOADCK command.
At this point, the module returns the status string "ERROR" without additional information.

Problem Analysis
In an attempt to fix the problem, it was analysed thoroughly, yielding a number of facts about
the problem that could possibly help to find a solution:

1. The used client and root certificates are valid. Testing them on various other systems
confirmed that they are accepted by the server and verify its certificate.

2. The error occurs when loading certificates, before they are being used. An unencrypted
connection can still be established. This means that the problem exists unrelated to the
server and is not caused by an authentication error.

Fix Attempts

Based on the results of the problem analysis, various approaches to find a solution were
identified and executed.

Chapter 7. Implementation 27

Firstly, the possibility of using invalid or incorrectly transmitted certificate files was eliminated
by checking the validity and contents of the certificate files.

Secondly, by following all product documentation precisely (see SIMCom, 2013), the possible
cause that commands were used incorrectly was accounted for. This was further confirmed
by re-implementing the same functionality in a Lua script which yielded no further error
information.

Because the module’s documentation states that certificate files can be installed in two differ-
ent formats (.der / encoded in binary and .pem / encoded in Base64) (see SIMCom, 2017d),
each of the files was installed in both formats and using them was attempted in all possible
combinations. In the case of the .pem files, this included installing four versions of each cer-
tificate: using both carriage return (CR) and line feed (LF) for new lines, using CR and LF
individually and completely omitting new lines.

Furthermore, a number of smaller changes were made to the implementation such as using
the exact file names used in the documentation or attempting the process on a completely
reset module in order to account for full storage or changed settings.

Finally, a hardware issue was considered, but both the fact that all other commands work
without a problem and the result of testing the code on another device of the same type show
that this is not the cause of the error.

During all attempts, various tries at receiving outside help were made, such as discussing the
problem with developers from other departments of the company as well as tutors, none of
which resulted in a solution. The module’s manufacturer was neither able to identify the error
nor provide usable troubleshooting guidance when contacted.

Eventually, the decision was made to work around the problem by implementing unencrypted
connections first and concentrating on realising the project’s other requirements.

Current Status

Up until the end of the project, no solution could be found to the certificate usage problem. For
this reason, the transmission of data was implemented over an unencrypted HT'TP connection
instead. While this is in clear violation of the requirement NF-HTTPS, it allows for testing
and validation of other project parts. Because the command structure to establish connections
is identical whether or not encryption is used in both AT commands (see SIMCom, 2017e)
and Lua functions (see SIMCom, 2015), all implementation can easily be switched to HI'TPS
if the problem was solved in future.

7.3 Result

Despite all efforts to implement the product based on the previously made software designs
and the customer’s requirements, it could not be realised up to full specifications: As described
in Section 7.2.5, no encrypted connection to the remote server could be established due to an
error in the process of loading certificate files. Apart from two minor requirements (F-SD-
Data-Discard and F-Bluetooth-Control), the product is otherwise feature complete.

28

8 Validation

As described in Section 2.2, part of the project’s task scope was the validation of all prod-
ucts. This consists of examining the results of unit and integration tests as well as analysing
quality measurements and verifying that all initially identified requirements are fulfilled. The
following sections describe these tasks and their results.

8.1 Software Tests

This section describes the results of the software tests carried out as decided upon during the
design phase of the project (see Section 5.5).

8.1.1 Unit Tests

Due to the decision to make use of test-driven development, the execution of tests was a
vital part of the development process: By implementing functionality to make tests pass,
functionality of methods and functions was decided upon before any real implementation was
made. This resulted in 100 per cent successful tests at the end of the project.

However parts of the system could not be tested using unit tests, such as the reading or
transmission of data, both of which rely heavily upon hardware calls and whose results vary
too greatly to verify them with predefined expected results. In order to test these parts,
manual tests were carried out whenever implementations were changed in order to verify no
functionality was broken or changed. At the end of the project, all desired functionality such
as reading data from the device’s OBD interface and GPS sensor or handling data via mobile
network transmission and SD card writing was verified to work as expected.

8.1.2 Integration Tests

The next step after testing the product’s code base in its individual parts was to verify that
all parts work together flawlessly. This was realised by carrying out manual integration tests.
At the beginning of the project, when not many results were available yet, these were carried
out by using dummy modules where implementations were not complete yet.

At later stages, the product was deployed to its target device and tested in its target envi-
ronment by attaching the device to a vehicle and carrying out test drives.

These test showed that all functionality apart from the encrypted transmission of telemetry
data worked flawlessly. Section 7.2.5 explains in depth the problems encountered with the
transmission of data.

Chapter 8. Validation 29

8.2 Quality Validation

After verifying that all parts of the software product were working as intended, the next step
was to take a final measurement of all quality metrics in order to defined the overall quality
reached by the product.

Based on the results of quality measurements that were to be taken bi-weekly (see Ap-
pendix E.3.3), Figure 8.1 visualises the change of measured quality scores over time by plotting
the calculated score of each measurement. Since lower score indicate higher quality, the graph
is inverted.

Quality Scores
-0,05

0,00
0,05 ——

0,10

0,15
0,20

0,25

—raading handling —e=startup

FiGURE 8.1: Calculated Score of Quality Metrics over Time

This shows that none of the quality metrics left the range of acceptable scores over the course of
the implementation. Furthermore the final quality scores are visible: While the highest score
was reached by the data reading metric, the handling metric leaves room for improvements.

Due to the fact that some implementation changes were made at the very end of the project
however, such as switching the transmission of data from being controlled by AT commands
to implementing a Lua script for this purpose, the final measurement does not represent the
final product’s performance. Apart from an improvement in the handling score, no significant
changes are estimated to be shown however.

This leads to the conclusion that, with respect to the quality metrics, the project was a
success.

8.3 Requirement Comparison

The final step to verify the project’s completeness and success was to make sure that all
requirements had been met.

As explained in Section 4.3.2, the projects requirements were split into core and auxiliary
requirements: While the core requirements were vital to the project’s success, all auxiliary
requirements simply added functionality.

Of all requirements listed in Appendix D.2.3 and Appendix D.2.4, only F-SD-Data-Discard,
F-Bluetooth-Control and NF-HTTPS remained unfulfilled. While F-SD-Data-Discard and

Chapter 8. Validation 30

F-Bluetooth-Control remained unfulfilled because of time constraints, NF-HTTPS could not
be fulfilled due to errors in system calls. Section 7.2.5 analyses this problem in detail.

8.4 Contradiction Between Results

The stark contrast between the almost perfect score reached by the product for its core quality
measurements and the fact that one of its core requirements was not implemented correctly
at all raises the question whether the selected quality requirements were chosen correctly.

By having a closer look at the metrics and their intended purpose however, it becomes obvious
that they are less concerned with the system’s functionality and more so with the performance
numbers shown by the product. This means that while additional metrics could have been
chosen to portray the product’s functionality more accurately, these would have relayed no
additional information that is not already conveyed in the requirements check.

31

9 Conclusion

The project’s original aim was to improve the process of carrying out test drives for newly
designed vehicles and vehicle parts by creating an easy-to-use software tool that gathers data
from the vehicle and transmits it to a remote server along with location data. Additionally,
a feasibility study concerning the real-time analysis of the same data had to be carried out.

In order to fulfill the first task, the implementation of the telemetry data transmission tool,
four of the five software development phases were carried out (analysis, design, implementa-
tion, validation). After all requirements and other parameters were identified, the product
was designed based on this information. Implementing the tool based on the designs and
verififying that all aims and targets were fulfilled were the next steps.

Unfortunately, the end result of this task did not fulfill all of its requirements. Most impor-
tantly, the encryption of all data transmission could not be realised due to some functionality
not working. Despite significant effort, this error could not be fixed and persists in the
product’s final version. This means that the company cannot use the product in real-world
settings.

The second task, carrying out a feasibility study on the topic of real-time data analysis on the
telemetry device, was completed without problems. Its results shows that, while implementing
real-time analysis of telemetry data on the device is not a problem on its own, some data may
be more difficult to obtain than anticipated. Furthermore, combining the transmission and
analysis of telemetry data will most likely lead to undesirable performance issues.

Although the project was not in itself successful in creating improvements to the company’s
test drive processes, its results and the knowledge gained during the execution can easily be
used to create such improvements. If, for example, the problem blocking the use of encrypted
connections for data transmission was solved, only two configuration items need to be changed
to make the product fully viable for its intended purpose.

32

10 Recommendations

Although the product in its current state is not viable for real-world application, it is con-
sidered mostly feature-complete with only minor changes required to fix all known flaws. For
this reason, two recommendations can be made with the intent of improving the project in
various ways.

The first recommendation is concerned with working around the HTTPS problem and making
the product viable for real-world application. By implementing a relatively simple protocol
to send data that was originally intended to be transmitted over mobile networks over the
device’s serial connection, an external device such as a smartphone or a mini computer like the
Raspberry Pi could take over the responsibility of transmitting data. Although the additional
device would interfere with the product’s "plug and play" feature, this would mean that the
intended functionality could still be fulfilled.

The second recommendation is to replace or refactor the device libraries supplied by the
manufacturer: Because they incorporate code not only for the specific device but also for
older versions with different hardware, they require unnecessarily large amounts of memory
to load. By removing all unused code, performance could be improved or additional features
could be implemented. Furthermore, implementation and maintenance could be simplified if
instead of importing all hardware functionality at once, clients could choose to import parts
of it, such as SD card handling, on their own.

33

List of References

alronzo, pseudonym (No date). GPS Basics - learn.sparkfun.com. URL: https://learn.
sparkfun.com/tutorials/gps-basics (visited on May 3, 2018).

Arduino (No datel|a]). Arduino - Products. URL: https://github.com/espressif/arduino-
esp32/blob/master/cores/esp32/main. cpp (visited on Apr. 18, 2018).

Arduino (No date[b]). Arduino Sketch. URL: https://www.arduino.cc/en/Tutorial/Sketch
(visited on Feb. 20, 2018).

Barry, R. (Dec. 2016). Mastering the FreeRTOS™ Real Time Kernel. Real Time Engineers
Ltd., pp. 243-258. URL: https://www.freertos.org/Documentation/161204_Mastering_
the_FreeRTOS_Real_Time_Kermel-A_Hands-0On_Tutorial_Guide.pdf.

Dana, P. H. and B. M. Penrod (1990). The Role of GPS in Precise Time and Frequency
Dissemination, 5. URL: http://www.pdana.com/PHDWWW_files/gpsrole.pdf (visited on
Apr. 19, 2018).

Eden, A. (Feb. 2018). Initial Project Interview, Translated from German.

Espressif Systems (Jan. 2018). ESP32 Datasheet. Espressif Systems. URL: https://www .
espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.

Fowler, M. (2003). UML Distilled Third Edition.

Freematics (No date[al). “Freematics ONE+ Developers Guide”. In: URL: https://freematics.
com/pages/products/freematics-one-plus/guide/ (visited on Feb. 19, 2018).

Freematics (No date[b]). “Freematics ONE+ Product Page”. In: URL: https://freematics.
com/pages/products/freematics-one-plus/ (visited on Feb. 19, 2018).

FreeRTOS (2017a). The FreeRTOS™ Reference Manual - API functions and configuration
options. Amazon Web Services, p. 76. URL: https://www.freertos.org/Documentation/
FreeRTOS_Reference_Manual_V10.0.0.pdf.

FreeRTOS (2017b). The FreeRTOS™ Reference Manual - API functions and configuration
options. Amazon Web Services, 157 {ff. URL: https://www.freertos.org/Documentation/
FreeRTOS_Reference_Manual_V10.0.0.pdf.

FreeRTOS (2017¢). The FreeRTOS™ Reference Manual - API functions and configuration op-
tions. Amazon Web Services, pp. 48-52. URL: https://www.freertos.org/Documentation/
FreeRTOS_Reference_Manual_V10.0.0.pdf.

Gamma, E.; R. Helm, R. Johnson, and J. Vlissides (1994). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 156 ff.

Google LLC (May 2018). Overview | Geocoding API | Google Developers. URL: https://
developers . google . com/maps/documentation/geocoding/intro#ReverseGeocoding
(visited on May 3, 2018).

Huang, S. (Oct. 2017). GPS problems - Freematics Forum. URL: https://freematics.com/
forum/viewtopic.php?f=14&t=2593#p5689 (visited on Apr. 18, 2018).

TAV (Jan. 2017). “IAV in Figures”. In: URL: https://www.iav.com/en/about-iav/iav-
figures.

IEEE (June 1998). IEEE Standard for Software Quality Assurance Plans. Software Engi-
neering Standards Committee of the IEEE Computer Society. URL: http://users.csc.
calpoly.edu/~ jdalbey/308/Resources/IEEE7301989.pdf (visited on May 2, 2018).

https://learn.sparkfun.com/tutorials/gps-basics
https://learn.sparkfun.com/tutorials/gps-basics
https://github.com/espressif/arduino-esp32/blob/master/cores/esp32/main.cpp
https://github.com/espressif/arduino-esp32/blob/master/cores/esp32/main.cpp
https://www.arduino.cc/en/Tutorial/Sketch
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
http://www.pdana.com/PHDWWW_files/gpsrole.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://freematics.com/pages/products/freematics-one-plus/guide/
https://freematics.com/pages/products/freematics-one-plus/guide/
https://freematics.com/pages/products/freematics-one-plus/
https://freematics.com/pages/products/freematics-one-plus/
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://developers.google.com/maps/documentation/geocoding/intro#ReverseGeocoding
https://developers.google.com/maps/documentation/geocoding/intro#ReverseGeocoding
https://freematics.com/forum/viewtopic.php?f=14&t=2593#p5689
https://freematics.com/forum/viewtopic.php?f=14&t=2593#p5689
https://www.iav.com/en/about-iav/iav-figures
https://www.iav.com/en/about-iav/iav-figures
http://users.csc.calpoly.edu/~jdalbey/308/Resources/IEEE7301989.pdf
http://users.csc.calpoly.edu/~jdalbey/308/Resources/IEEE7301989.pdf

List of References 34

Jimb0, pseudonym (No date). Serial Communication - learn.sparkfun.com. URL: https://
learn.sparkfun.com/tutorials/serial-communication (visited on Apr. 25, 2018).

Kanda Admin, pseudonym (Nov. 2012). CAN Bus and OBD-II. (Visited on May 4, 2018).

me-no-dev, pseudonym (Aug. 2017a). arduino-esp32/main.cpp at master - espressif/arduino-
esp32 - GitHub. URL: https://github.com/espressif/arduino-esp32/blob/master/
cores/esp32/main. cpp.

me-no-dev, pseudonym (Mar. 2017b). micros() overflow fix by jpmeijers - Pull Request 267
- espressif/arduino-esp32 - GitHub. URL: https://github . com/espressif /arduino -
esp32/pull/267.

SIMCom (Dec. 2013). SSL Application Note. SIMCom, pp. 15-17, 21-23. URL: http://
simcom.ee/documents/SIM5360/SIM5360_SSL_Application_Note_VO0.01.pdf.

SIMCom (July 2015). SIM5360 LUA Application Note V0.05. SIMCom, pp. 131-135. URL:
http://simcom.ee/documents/SIM5360/SIM5360_LUA_Application_Note_VO.05.pdf.
SIMCom (Mar. 2017a). AT Command Set SIM5360. SIMCom. URL: http://simcom. ee/

documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf.

SIMCom (Mar. 2017b). AT Command Set SIM5360. SIMCom, pp. 469, 470. URL: http:
//simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_VO.24.pdf.

SIMCom (Mar. 2017¢c). AT Command Set SIM5360. SIMCom, p. 25. URL: http://simcom.
ee/documents/SIM5360/SIMCOM_SIM6360_ATC_EN_VO.24.pdf.

SIMCom (Mar. 2017d). AT Command Set SIM5360. SIMCom, p. 517. URL: http://simcom.
ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_VO.24.pdf.

SIMCom (Mar. 2017e). AT Command Set SIM5360. SIMCom, pp. 467, 468. URL: http :
//simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_VO.24.pdf.

Sparkfun Electronics (No date). SparkFun Atmospheric Sensor Breakout - BME280 - SEN-
13676 - SparkFun Electronics. URL: https://www.sparkfun. com/products/13676 (visited
on May 3, 2018).

Wikipedia (No date). OBD-II PIDs - Wikipedia. URL: https://en.wikipedia.org/wiki/
OBD-II_PIDs (visited on Apr. 20, 2018).

Windl, U., D. Dalton, M. Martinec, and D. R. Worley (Nov. 2006). The NTP FAQ and
HOWTO: Understanding and using the Network Time Protocol. URL: http://www.ntp.
org/ntpfaq/NTP-s-algo.htm#Q-ACCURATE-CLOCK (visited on Apr. 18, 2018).

https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/serial-communication
https://github.com/espressif/arduino-esp32/blob/master/cores/esp32/main.cpp
https://github.com/espressif/arduino-esp32/blob/master/cores/esp32/main.cpp
https://github.com/espressif/arduino-esp32/pull/267
https://github.com/espressif/arduino-esp32/pull/267
http://simcom.ee/documents/SIM5360/SIM5360_SSL_Application_Note_V0.01.pdf
http://simcom.ee/documents/SIM5360/SIM5360_SSL_Application_Note_V0.01.pdf
http://simcom.ee/documents/SIM5360/SIM5360_LUA_Application_Note_V0.05.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
http://simcom.ee/documents/SIM5360/SIMCOM_SIM5360_ATC_EN_V0.24.pdf
https://www.sparkfun.com/products/13676
https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/OBD-II_PIDs
http://www.ntp.org/ntpfaq/NTP-s-algo.htm#Q-ACCURATE-CLOCK
http://www.ntp.org/ntpfaq/NTP-s-algo.htm#Q-ACCURATE-CLOCK

A Project Plan

PROJECT PLAN
for the project

Transmission and Analysis of Vehicle

Telemetry Data using OBD-11
and Cellular Networks

[AV GmbH
by Nicholas Walter
Gifthorn, March 6, 2018

35

Table of Contents

36

A1l Context o i i i i i i e .. 37
A1l Thecompany ittt 37
A.1.2 The department 37

A2 TheProblem ittt 38
A.2.1 Problem description L L 38
A.2.2 Solutiondraft 38
A23 Expectedresults 38

A3 The Project . « v v v v v v v v v o o e e et ettt oo s oo oo s oo 39
A3.1 Assignment 39
A3.2 Deliverables 39
A3.3 Scope ..o 40
A3.4 Organisation 41
A.3.5 Testing and Quality Assurance 42

A4 Planning . . . v v v v v v o vt ot e e e e e e e e e e e e e e e e e 43
A.4.1 Imitial planning 43
A42 Deadlines 43
A4.3 Communication 43

A5 Revision History . . .« ¢ v v v v v v i i v e e et o et v o oot oo 45

Appendix A. Project Plan 37

A.1 Context

A.1.1 The company

TAV ("Ingenieurgesellschaft Auto und Verkehr" / "Engineer Society Automobile and Traffic")
originated as a research institute as part of the Technische Universitit Berlin in 1983. Today,
they employ more than 6,000 people (see TAV, 2017) and the company has become a world-
wide supplier of automotive parts and designs.

A.1.2 The department

The project described in this document will be carried out in the department "Vehicle IT",
which is responsible for the development of software in, around, and related to automobiles
for TAV’s customers. Part of their every-day job is the testing and validation of new features,
parts or designs in so-called "Test vehicles" ("Versuchsfahrzeuge").

Appendix A. Project Plan 38

A.2 The Problem

The following subchapters will define the problem the project intends to solve, a rough solution
draft taken as basis for future definitions and plannings as well as results the stakeholders
expect to see when the project is completed.

A.2.1 Problem description

As described in subsection A.1.2, a big part of the department’s responsibility is the validation
of designs and parts created for customers. Reading and analysing information from these
vehicles is a vital part of these tests. At the moment, the department uses standalone devices
that can be connected to both the vehicle and a cellular connection in order to retrieve data
and send it to a remote server where it can be analysed, however these are bulky, expensive
and take a not insignificant amount of time to install before tests can actually be started.

A.2.2 Solution draft

The project described in this document offers a solution to the problems outlined in sub-
section A.2.1 in form of an Arduino-based OBD-II dongle. The "ONE+" produced by the
company Freematics uses the well-known Espressif ESP32 as main controller and is therefore
fully programmable. Additionally, it houses a variety of sensors (Global Positioning System
(GPS), Motion/ Orientation/ G-force, On Board Diagnostics (OBD) and is capable of trans-
mitting data in a number of ways (SD-storage, Bluetooth, Cellular connections, WiFi) (see
Freematics, No date(b)). Using these functionalities, the basic premise of the project is to
program the device to read data from the diagnostics port of the vehicle it is attached to,
briefly analyse this data and then to transfer it to a remote web-server for more in-depth
analysis using the previously mentioned data transmission possibilities. A more exhaustive
description of the project will be made once the required analyses have been completed and
the project has been defined in more detail.

A.2.3 Expected results

At the end of the project, the device should be capable of reading and transmitting data as
described in subsection A.2.2. Tt is expected to make testing of vehicles and vehicle parts
easier than it is now, saving time and therefore money.

Appendix A. Project Plan 39

A.3 The Project

The following sections explain the process to solve the problem outlined in subsection A.2.1.
They describe the project assignment in detail, define deliverables and scope as well as other
project parameters.

A.3.1 Assignment

The project is divided into two core objectives: The implementation of the solution for the
problem described in subsection A.2.1 and a research report. The following paragraphs briefly
describe both of them.

As described in subsection A.2.2, the basic premise of the solution is to program an Arduino-
based OBD-II dongle so that it reads and briefly analyses data coming from the vehicle it is
attached to.

Simultaneous to the process of gathering and analysing data, the device should also transmit
data to a pre-existing remote server for further analysis. This transmission needs to be secure
and should be realised using the cellular connection that can be established using the built-in
3G module.

The specific data to read and analyse as well as detailed information regarding the transmission
of this data will be defined in a requirements analysis at a later stage of the project.

Simultaneous to the development of the product itself, a research report on the topic of
whether or not the device can be used for a specific real-time data analysis task should be
created (see Appendix A.3.2).

A.3.2 Deliverables

The following subsections describe the two core objectives to be carried out during the ex-
ecution of the project. These will be more clearly and granularly defined once the project
analysis in general and the requirements analysis specifically have been concluded.

Software

The project consists of two main deliverables: As described in Appendix A.3.1, the first
deliverable is a piece of software to run on the afore-mentioned OBD-II dongle with the aim
of reading, analysing and transmitting data from any OBD-compatible vehicle it is attached
to.

Attached to this software, a number of documents defining and describing the project and its
parts should be created:

e Project Plan
e Stakeholder Analysis

e Requirements Analysis

Quality Management Plan

Software Design Document

Appendix A. Project Plan 40

o Intermediate Progress Report
e Project report (in form of Thesis)

Deadlines for each of these items can be found in Appendix A.4.2.

Research

The second deliverable is a report detailing the results of the research concerning the feasibility
of analysing vehicle data in real time in order to identify invalid test runs:

Because modern cars consist of thousands of individual parts, each of which must be tested
to find flaws and to prove it is working correctly, so called test runs are part of every vehicle
design company’s every-day business. These consist of very strictly pre-defined parameters
(such as what type of road to drive on what for what time and distance, what speed to drive
at, times the vehicle must be in idle, etc.), which often makes it difficult for test drivers
to recognise when the test drive they are currently working on became invalid because a
parameter cannot be fulfilled anymore. Because these tests are not cheap to carry out, errors
like this can cause significant expenses that need to be avoided.

The research should clarify whether it is feasible to create a software that provides instance
feedback to drivers on test runs, notifying them of invalid runs so that they can be aborted
before they are completed.

A.3.3 Scope

In order to be able to fulfill the project’s requirements to their fullest within the given time
frame, its scope must be clearly defined so that feature-creep and bloating do not threaten to
sabotage the project. The following subchapters clearly define what is included in and what
is excluded from the project scope for the two core objectives.

Software

Included

e Analysis of stakeholders, risks and requirements

Design of software solution

Implementation of software solution

Validation of software solution against requirements and predefined quality goals

Creation and Maintenance of the documents described in section A.3.2

Excluded
e Maintenance of software solution

e External components that interface with the product (e.g. mobile applications to realise
bluetooth controls)

Appendix A. Project Plan 41

Research

Included

e Analysis of posed research question

Excluded

e Implementation of real time data analysis tool (may optionally be considered if time
constraints allow it)

A.3.4 Organisation

In order to fully understand the project in its details, it is also important to know how it is
organised. The following subchapters briefly summarise the results of the stakeholder analysis
(see Appendix B) and briefly introduce the project team.

Stakeholders

In order to identify and classify people and parties relevant to the project, a stakeholder anal-
ysis was carried out. The graphic below (Figure A.1) shows the result of their classification,
assigning each of the identified entities a group defining the optimal way to handle them
during the project’s execution.

Project
Supervisor

Company

Project
Team

Power

Head of
Department

Interest

FI1GURE A.1: Stakeholder Power/ interest grid

This shows that the most important party to consider is the project supervisor who has the
most interest in and the most power over the project.

People

Due to the project’s nature as a graduation thesis, only very few people are relevant to the
project, see Table A.1. The table lists them by name and defines their roles and responsibili-
ties.

Appendix A. Project Plan

42

TABLE A.1: People relevant to the project

Name

Role

Responsibilities

Dr. Ing. Sebastian Bode

Project Owner

Dr. Ing. Arnd Eden

Project Supervisor

Supervision of project

Nicholas Walter

Project Developer

Analysis, Design,
Implementation and
Validation of product,
Research

A.3.5 Testing and Quality Assurance

Because the project’s aim is to create a product that will handle sensitive data in possibly a
production environment, it is important that it is implemented very closely to its specification,
especially with respect to data security. In order to ensure this, a quality management plan
that will define testing and validation measures will be created within the starting phase of
the project. The deadline for this document is defined in subsection A.4.2.

Appendix A. Project Plan 43

A.4 Planning

The following sections describe the initial planning made for the project’s execution, which
consists of roughly defined start and finish dates for each core segment, and a number of
deadlines set for important documents and deliverables.

A.4.1 Initial planning

Because the project is very limited with regard to its duration, it is important to plan its
execution in detail in order to ensure that all of its goals can be completed within the given
time frame. For this reason, all of the most important tasks to complete were gathered and
listed with their respective deadlines. A chart to visualise this data was created to make it
easier to recognise upcoming due dates and track progress, see Figure A.2.

The given time frame was divided to accommodate both main deliverables (see subsec-
tion A.3.2). Furthermore the project section was subdivided into its individual phases.

Because the project is still in its early days at the time this document is produced, all data is
preliminary and subject to change, for example once the requirements analysis is concluded.

A.4.2 Deadlines

Having defined rough guidelines for the project’s time planning, the next step was to define
deadlines for the deliverables described in subsection A.3.2, these are listed in Table A.2.

TABLE A.2: Deliverables Deadlines

Deliverable Deadline

Project Plan 2018-03-06
Stakeholder Analysis 2018-03-06
Requirements Analysis 2018-03-16
Quality Management Plan 2018-03-26
Software Design Document 2018-03-26
Intermediate Progress Report 2018-03-27
Software solution 2018-06-12
Research report 2018-06-12
Project report (in form of Thesis) | 2018-06-12

A.4.3 Communication

To ensure that a high quality product can be delivered at the end of the project, communi-
cation between the project team and the customer is of vital importance, since requirements
or other parameters could change quickly. Because of the project’s small scale however, and
because it proved to be difficult to schedule weekly meetings, a full-scale implementation of
an established communication pattern such as Scrum was impractical. For this reason, a very
reduced version will be implemented by establishing a bi-weekly meeting with the intention
of discussing results of the previous time slice and plans for the upcoming time slice. Based
on these discussions, the project plan will updated.

44

Appendix A. Project Plan

1IRYD) WURY) gy THNDI]

EEENENE

EEERNDNE

s s[4] L[#] 1w

EEENONE

EEE NN EEENDN T EEE F_mz N EEE F_\AE L EEEN AN EEEN N EEEN N EEE NN E NN e EEN N EE NN EEEN DN D EEE RN
arunl 1] 81 unl] T AEp 87| a1 AER 17| AT AER 71| B1AEN £ 81 4dy 0F 91 Jdv £¢| 81.4dv o] 810V g 5T Idv g| 8148 52 BLEN B

BT4EW ZT

8T JEW G

8T 984 &8¢

8T Q984 8T

EEE
8T

Yoleasay
uonepes
uoisn|pUoY

yioolenig

IR
Hlomawely
uopeuawadug
uBIsaq .emyos
Juswabeusy Ayeny
ubiseam
JUBWISSasSY ysy
sisfjeuy siuswalinbay
sishjeuy s
ue|d 1afod
sisf|euy Jap|oysyels
bujuue|dg

awen

oz

4
polonag T

ai

0z
6T
8T
L1
k=R
ST
LA
ET
ZT
T
0T

Al m g e~ e

Appendix A. Project Plan

45

A.5 Revision History

TABLE A.3: Revision History

Date Changes

2018-03-20 Defined scope in more detail
2018-03-19 Added communication chapter
2018-03-06 Original Document

B Stakeholder Analysis

STAKEHOLDER ANALYSIS
for the project

Transmission and Analysis of Vehicle

Telemetry Data using OBD-11
and Cellular Networks

[AV GmbH
by Nicholas Walter
Gifthorn, March 6, 2018

46

Table of Contents

47

B.1 Identification

B.2 Prioritisation

Appendix B. Stakeholder Analysis 48

B.1 Identification

In order to gather requirements, all people and parties with power over the project and all
entities that would likely be affected by the project and its results in the presence or in
the future would need to be considered. To make this easier, a list of these entities was
compiled based on informal background research regarding the project and its context as well
as stakeholder nomination, where already identified key stakeholders were asked to list other
possible stakeholders.

The resulting list of identified stakeholders is depicted in Table B.1.

TABLE B.1: Stakeholders

Stakeholder Description and Relevance

Company TAV Interested in using time and resources efficiently
Department "Vehicle IT" | Interested in using new technologies to make
their work easier and more efficient

Project Supervisor Will make final decisions
Project Team Will create the product

Appendix B. Stakeholder Analysis 49

B.2 Prioritisation

With the intention of creating an easier overview over the stakeholders identified in section B.1,
they were categorised based on their power over and interest in the project. The resulting
Power / Interest grid is depicted in Figure B.1

Project
Supervisor

Company

Project
Team

Power

Head of
Department

Interest

FiGURE B.1: Stakeholder Power/ interest grid

Using this visualisation, it is easy to determine how each of the stakeholders should be handled
during the project execution:

The lower left corner holds parties that are of very little importance during the project. Their
wishes and ideas for the project should however be taken into consideration during the analysis
and design phase. None of the stakeholders identified for this project fit this description.

Parties in the upper left corner mostly have no direct interest in the project itself, however
their influence over it could be very big if they desired: However unlikely, any input from
these parties should be taken into close consideration. For this project, only a single entity is
sorted into this corner: The company itself as represented by its executives. Given that TAV
is a company of considerable size, it is unlikely that any information regarding this project
specifically is conveyed to them or that they would take any action to influence it.

The lower right corner contains parties that can only have very little influence over the
project’s execution but who have a large interest in it nonetheless. Specifically, it holds
the head of the department "Vehicle IT". In their role as supervisor to all projects that
are being carried out in the department, this person’s interest in the project is considerable,
however their direct influence over it is lower than that of other parties.

Finally, the upper right corner holds people with large influence and a lot of interest in the
project: Their wishes and needs should be satisfied at all times in order to keep the project
going. In this instance, the project supervisor as well as the project team reside in this corner.

C Risk Analysis

RISK ANALYSIS
for the project

Transmission and Analysis of Vehicle

Telemetry Data using OBD-11
and Cellular Networks

[AV GmbH
by Nicholas Walter
Gifthorn, March 7, 2018

20

Table of Contents

ol

C1
C.2
C.3
C4

Introduction & @ i i i i i i e e e e e e e e 52
Risk Identification i i i i i e e e e e e e e e 53
Risk Evaluation ¢ ¢t i v v v v v i o o v e ot e oo o oo 54

Risk Handling« o vt v v v i o i i et e o oot oo o oo a 55

Appendix C. Risk Analysis 52

C.1 Introduction

This document describes the identification and evaluation of risks to the project "Vehicle
Telemetry using OBD-II and cellular networks". It highlights what risks exist during the
execution of the project, attempts to estimate their likelihood of occuring and their impact,
and defines mitigation and contingency measures.

Appendix C. Risk Analysis

C.2 Risk Identification

Since the project’s goal is not to change an existing workflow in the company or make changes
to a pre-existing product, there are no risks concerning the loss of functionalty or causing
delays in the context of other work or projects. Furthermore the project’s small team size
means that there are no risks regarding a sudden loss or change of team members by default.
All other risks that could be identified have been listed in Table C.1, describing their conditions

and consequernces.

TABLE C.1: Identified risks

+# Condition Consequence
1 Insufficient time to finish project Not all requirements can be re-
alised
2 Device does not offer required func- | Not all requirements can be re-
tionality alised
3 Additional requirements appear | More time is required to meet all
during project execution requirements
4 A requirement takes longer to im- | More time is required to meet all
plement than anticipated requirements
) Hardware programming causes dif- | Some core features may remain un-
ficulties/ delays fulfilled/ take longer so that other
requirements cannot be worked on

Appendix C. Risk Analysis 54

C.3 Risk Evaluation

After risks were identified, their individual exposure was calculated from their probability of
occuring (0 to 1) and the impact they would have on the project (0 to 10). The higher the
exposure, the more dangerous a risk would be to the project. Table C.2 lists the risks ordered
by their exposure.

TABLE C.2: Risk Exposure

£ Probability Impact Exposure
5 0.2 6 1.2

3 0.25 4 1

2 0.1 7 0.7

4 0.2 3 0.6

1 0.1 6 0.6

For better readability, this data was then projected into a graph plotting impact over prob-
ability (see Figure C.1), split into four quadrants: Bottom left for risks that are unlikely to
have significant influence over the project, top right for those that pose a major threat and
top left / bottom right for those in between.

10
9
8
7 °
~ 6 o o o1
[]
2 5 Y
3 °
4
2
1 ®5
0
0 0,2 0,4 0,6 0,8 1

Probability

Ficure C.1: Risk Matrix

Appendix C.

Risk Analysis

25

C.4 Risk Handling

In order to keep risks to the project on as low a level as possible, the final step of the risk
analysis was to define mitigation and contingency actions for each risk. Table C.3 lists both

for each risk.

TABLE C.3: Risk Handling

Mitigation Contingency
1 Create detailed and exhaustive | Implement most important re-
project planning in advance quirements first
2 Disallow requirements in need of | Attempt to replace missing func-
non-existant functionality tionality, otherwise cancel require-
ment
3 Carry out exhaustive requirements | Add new requirement to list of low-
analysis before implementation | priority requirements
start
4 Create detailed and exhaustive | Work on most important require-
project planning in advance ments first to ensure they are com-
pleted
) Learn as much as possible about | Implement requirement as far as
hardware programming and appli- | possible, use workarounds where
cable hardware required

D Requirements Analysis

REQUIREMENTS ANALYSIS
for the project

Transmission and Analysis of Vehicle

Telemetry Data using OBD-11
and Cellular Networks

[AV GmbH
by Nicholas Walter
Gifthorn, June 8, 2018

26

Table of Contents

o7

D.1 Introduction & @ittt it tteeneeeeeen. 58
D.1.1 Purpose of the System oo Lo 58
D.1.2 Objectives o o 58
D.1.3 Scope 58

D.2 Proposed System ittt e e 60
D.2.1 Overview e 60
D.2.2 Requirement Analysis 0oL 60
D.2.3 Functional requirements oo, 61
D.2.4 Non-Functional requirements 65
D.2.5 Requirements Prioritisation 66

D.3 Revision History ¢ v v v v v v i v v v v ot e ot e v oot oo 67

Appendix D. Requirements Analysis 58

D.1 Introduction

This document describes the requirements analysis carried out for the project "Transmission
and Analysis of Vehicle Telemetry Data Using OBD-II and Cellular Networks". It briefly
describes the project’s goals and the system to replace. Afterwards, it lists functional and
non-functional requirements and plots them in a value / cost prioritisation.

D.1.1 Purpose of the System

The system’s purpose is to transmit telemetry data from an arbitrary OBD-compatible vehicle
to a remote server. This allows for real-timme analysis of this data, enabling designers and
developers to identify flaws and failures as well as successes immediately.

D.1.2 Objectives

The project’s objective is to program an Arduino-based OBD-II dongle to read data from the
vehicle it is connected to and transmit it to the previously mentioned remote server using the
device’s ability to create a cellular connection to the internet.

D.1.3 Scope

In order to be able to fulfill the project’s requirements to their fullest within the given time
frame, its scope must be clearly defined so that feature-creep and bloating do not threaten to
sabotage the project. The following subchapters clearly define what is included in and what
is excluded from the project scope for the two core objectives.

Software

Included

e Analysis of stakeholders, risks and requirements

Design of software solution

Implementation of software solution

Validation of software solution against requirements and predefined quality goals

Creation and Maintenance of documents describing results and progress

Excluded

e Maintenance of software solution

Research

Included

e Analysis of posed research question

Appendix D. Requirements Analysis 59

Excluded

e Implementation of real time data analysis tool (may optionally be considered if time
constraints allow it)

Appendix D. Requirements Analysis 60

D.2 Proposed System

This chapter describes the system that is intended to be implemented.

D.2.1 Overview

The system acts as middle-point between two components that need to be connected: On one
side, a vehicle generating telemetry data that needs to be analysed and on the other side a
web server that is capable of receiving and handling this data.

D.2.2 Requirement Analysis

The requirement analysis for this project consisted of two phases: Firstly, the requirement
elicitation, during which requirements were identified and described and secondly, the evalu-
ation phase, during which requirements were assigned to a priority group based on the value
they bring to the project and the cost they come at. The following subsections describe these
phases. Appendix D.2.3 and Appendix D.2.4 show the final results of all phases.

Requirement Elicitation

In order to identify the requirements describing this project and its deliverables, a number
of well-known techniques were used for requirement eliciation. At the very beginning, the
project’s goals were gathered from the customer by holding an interview to describe the
project’s main goals. The interviews results were supported by analysis of an exemplary
scenario in which the product could be used.

After some time had been spent on other analyses of the project, another interview was held
to confirm the found requirements and identify additional goals.

Appendix D.2.3 and Appendix D.2.4 list the identified requirements.

Requirement Evaluation

After requirements were identified, the next step was to evaluate them for the value they
would bring to the project as well as the costs they would require to meet. Since there was
no measurable value to be found in any of the requirements, a comparison matrix was used
to identify the relative value of requirements compared to each other. Furthermore, because
of the projects small scale and limited time frame, instead of cost, the number of days the
implementation would take was estimated. Based on this information, a cost/ value graph
was created, plotting requirements’ value over their cost and assigning them them to high,
medium and low priority groups. Figure D.1 shows the result of this evaluation: the x-axis
shows the requirements’ cost in days of work, the y-axis visualises the value added to the
project in percent.

Appendix D. Requirements Analysis 61

25

High
priority . F-Cellular
20 Medium
priority F-OBD
F-GPS
15
g F-JSON
§ ® F-Configuration
10
F-SD-Data
® F-SD-Data-Discard
5
Low ® F-SD-logging
b priority ® F-Bluetooth-Control
0
0 2 4 6 8 10 12 ®FTime

F1cure D.1: Cost/ Value Graph of Project Requirements

D.2.3 Functional requirements
The following subsections list the project’s functional requirements. Each requirement was
assigned a unique identifier and a priority group. A description and a definition how the

success of the requirement can be measured have been added as well. Finally, the date each
requirement added to the list as well as the source it has been obtained from were identified.

Requirement F-Cellular

TABLE D.1: Requirement F-Cellular

Requirement ID F-Cellular Type: Functional

Dezagision The product will use cellular connections to transmit
collected data to a defined remote server
All analyses of vehicle data collected happen on this

: remote server, by using cellular connections, no

Rationale .
external device needs to be set up to start data
transmission

Measurement -

Priority Medium

Date created 2018-03-05 ‘ Origin: Interview Arnd Eden

Appendix D. Requirements Analysis

Requirement F-OBD

TABLE D.2: Requirement F-OBD

Requirement ID F-OBD ‘ Type: Functional
Besesdiption The product should read all available data from the
vehicle’s OBD-II port
Because the analysis server is set up to receive
Rationale arbitrary data, future-proofing by sending all available
data saves future development time
A remote server will be set up to receive data. All
Measurement . . .
incoming data will be checked for completeness
Priority High
Date created 2018-03-05 ‘ Origin: ‘ Interview Arnd Eden

Requirement F-GPS

TABLE D.3: Requirement F-GPS

Requirement ID F-GPS ‘ Type: ‘ Functional
The product should gather and transmit GPS data,
Description linking it to data gathered in fulfillment of requirement
F-OBD
. GPS allows for analysis of data based on time and
Rationale .
location
Meastrement A remote server will be set up to receive data. All
incoming data will be checked for completeness
Priority Medium
Date created 2018-03-05 ‘ Origin: Interview Arnd Eden

Requirement F-JSON

TABLE D.4: Requirement F-JSON

Requirement ID F-JSON ‘ Type: ‘ Functional
The product should encode the gathered information
Description using JSON in a predefined manner (see Appendix H
for an exact formatting example)
Because the remote server’s location may change at
Rationale any point in time, it should not be a large effort to
reconfigure this setting in the product.
Two remote servers will be set up to test this. Only
Measurement one file should may be changed to configure the device
to reach either of them
Priority High
Date created 2018-03-13 ‘ Origin: Interview Arnd Eden

Appendix D. Requirements Analysis

Requirement F-Time

TABLE D.5: Requirement F-Time

Requirement ID F-Time Type: Functional

The product should make use of an internet connection
- to get the current world time via any protocol at

Description . . .
system startup, then save it and update it based on its
internal microsecond counter
Because the product will be run on a microcontroller

. that has no functionality to get the current time or

Rationale) .
save it between power cycles, current time needs to be
got on system startup

Measurement -

Priority Low

Date created 2018-03-13 ‘ Origin: Interview Arnd Eden

Requirement F-Configuration

TABLE D.6: Requirement F-Configuration

Requirement ID F- Type: Functional
Configuration
. The analysis server location should be easily
Description
configurable
Because the remote server’s location may change at
Rationale any point in time, it should not be a large effort to
reconfigure this setting in the product.
Two remote servers will be set up to test this. Only
Measurement one file should may be changed to configure the device
to reach either of them
Priority High
Date created 2018-03-13 Origin: Interview Arnd Eden

Requirement F-SD-Data

TABLE D.7: Requirement F-SD-Data

Requirement ID F-SD-Data ‘ Type: ‘ Functional
.. The product should log all data to an SD-card for
Description .
safe-keeping
In case of signal loss, more data can be saved to an
Rationale SD-card than to internal memory. Upon signal regain,
this data can be transmitted
SD-card logging will be verified by examining the
Measurement contents of the SD-card after a test run
Priority Low
Date created 2018-03-13 ‘ Origin: ‘ Scenario Analysis

Appendix D. Requirements Analysis

Requirement F-SD-Data-Discard

TABLE D.8: Requirement F-SD-Data-Discard

Requirement ID F-SD-Data- Type: Functional
Discard
Dezutisicon The product should discard the oldest data on the
SD-card when no more space is available
If signal remains unavailable for an extended amount of
Rationale time, the SD-card will not be able to hold infinite data.
Therefore the oldest data should be deleted to make
room for new data
SD-card logging will be verified by examining the
Measurement contents of the SD-card after a test run
Priority Medium
Date created 2018-03-13 ‘ Origin: ‘ Scenario Analysis

Requirement F-SD-Logging

TABLE D.9: Requirement F-SD-Logging

Requirement ID F-SD- Type: Functional
Logging

Description The product should store system logs on the SD-card
For both debugging of the product and vehicle error

Rationale identification, it is useful to know at what time system
events such as signal loss, signal regain etc. occured
SD-card logging will be verified by examining the

Measurement contents of the SD-card after a test run

Priority Low

Date created 2018-03-13 ‘ Origin: ’ Scenario Analysis

Requirement F-Bluetooth-Control

TABLE D.10: Requirement F-Bluetooth-Control

Requirement ID F-Bluetooth- | Type: Functional
Control
- The product will be controllable using Bluetooth
Description .
connections from e.g. a smartphone
Bluetooth controls would allow users to turn data
Rationale logging off or put the device into low-power mode
without phyisical interaction
Measurement -
Priority Low
Date created 2018-03-13 ‘ Origin: ‘ Scenario Analysis

Appendix D. Requirements Analysis

D.2.4 Non-Functional requirements

The following subsections list non-functional requirements. Because they do not add a specific
value to the product, they have not been considere in the cost/ value analysis and therefore
have not been assigned to a priority group. However, it is important to keep them in mind

when implementing funcional requirements.

Requirement NF-HTTPS

TABLE D.11: Requirement NF-HTTPS

Requirement ID

NF-HTTPS | Non-Functional / Security

‘ Type:

The product will use HT'TPS to encrypt the

Description transmission of vehicle data
. Sensitive Vehicle Telemetry needs to be protected from
Rationale :
attackers & spies
Measurement

Date created

2018-03-05 ‘ Origin: ‘ Interview Arnd Eden

Requirement NF-Performance

TABLE D.12: Requirement NF-Performance

Requirement ID

NF- Type:
Performance

Non-Functional / Performance

The product should read and transmit data at the

Description highest rate possible, but at least once per second
The product’s purpose is to enable real-time
Rationale monitoring, therefore a delay of more than one second
is not acceptable
Performance measurement will be added to the
Measurement

product’s source code

Date created

2018-03-13 Origin: Interview Arnd Eden

Requirement NF-Extendibility

TABLE D.13: Requirement NF-Extendibility

Requirement ID

NF- Type: Non-Functional / Code Quality

Extendibility

The product should be easily extendable by adding

Description more sensors or more data handling procedures
The project will not result in a completely finished
Rationale product but instead in a prototype which may require
changes and additions
Measurement -

Date created

2018-03-13 ‘ Origin: Interview Arnd Eden

Appendix D. Requirements Analysis

66

Requirement NF-Flexibility

TABLE D.14: Requirement NF-Flexibility

Requirement ID NF- Type: Non-Functional / Code Quality
Flexibility
The product should be able to continue working if

Description environment parameters change, such as loss of cellular
connection or unavailability of GPS signal
The availability of data sources and handling targets
cannot be guaranteed for the entire run time duration,

Rationale therefore the product must be able to cope if any
number of these are expectedly or unexpectedly
unavailable

Measurement -

Date created 2018-03-13 ‘ Origin: Interview Arnd Eden

D.2.5 Requirements Prioritisation

Although each requirement’s priority was identified earlier, by the customers wishes the re-
quirements F-Cellular, F-OBD and F-GPS will be implemented first regardless of the priority
they were assigned. Furthermore these requirements will suffice to consider the project as
finished while all other requirements will be considered as additional features of the product.

Appendix D. Requirements Analysis

67

D.3 Revision History

TABLE D.15: Revision History

Date

Changes

2018-03-16

Original Document

E Quality Management Plan

QUALITY MANAGEMENT PLAN
for the project

Transmission and Analysis of Vehicle

Telemetry Data using OBD-11
and Cellular Networks

[AV GmbH
by Nicholas Walter
Gifthorn, June 8, 2018

68

Table of Contents

69

E.1 Introductionttt iinnneeeeenen. 70
E.1.1 Referenced Documents 70
E.1.2 Management 70

E.2 Documentation« v v v v v vt v v v o ot o o s o v oot oo 71

E.3 Standards, Practices and Quality Control 72
E.3.1 Standards 72
E.3.2 Practices e e 72
E.3.3 Quality Control 72

E.4 Quality Control Measurements 75
E.4.1 Measurements: 2018-03-31.o 0. 75
E.4.2 Measurements: 2018-04-14 0o 75
E.4.3 Measurements: 2018-04-28 Lo oL 76
E.4.4 Measurements: 2018-05-12. Lo 77

E.5 Revision History« v v v v v v v v v v v ot oot v v oot oo 78

Appendix E. Quality Management Plan 70

E.1 Introduction

This document is part of the project "Transmission and Analysis of Vehicle Telemetry Data
Using OBD-II and Cellular Networks". It describes quality standards the project shall adhere
to and how they will be met. It defines activities to assure and control quality throughout
the project. Furthermore it will list comparisons between actual measurements and quality
targets for each point.

E.1.1 Referenced Documents

This document is loosely based on the IEEE Standard for Software Quality Assurance Plans
(see IEEE, 1998). Due to the minimal scope and duration of the project, a full implementation
of the document was deemed unnecessary and unlikely to have a net positive influence on
product quality and implementation time. An old version of this standard was used as newer
versions are not freely available.

E.1.2 Management

This section describes the organisation in which the project will be carried out as well as
the tasks that need to be carried out in order to achieve a high quality product. Due to the
project’s team size of a single person, responsibilities do not need to be divided up.

Organisation

The project will be carried out in the company ITAV, more specifically in the department
Vehicle I'T, whose responsibility is the development of software solutions in and around cars.

Tasks
In order to maintain a high standard of quality throughout the project, a number of tasks are
defined that need to be carried out:

e Definition of Key Quality Metrics

e Initial measurement of metrics

e Repeated measurement of metrics to track progress

e Analysis of progress based on measurements

While the first two tasks, the definition and initial measurement, only need to be carried out
once at the beginning of the implementation phase, the other two tasks are intended to be
carried out at the end of every second week: This way, quality changes can be identified and
analysed in order to facilitate improvements to the product.

Appendix E. Quality Management Plan 71

E.2 Documentation

This chapter describes the sources from which the quality metrics can be drawn.
The following documents are of relevance to the quality management:

e Project Plan (see Appendix A)

e Requirements Analysis (see Appendix D)

o Software Design Document (see Appendix F)

The project plan defines the project’s scope while the requirements analysis lists the require-
ments on which all quality metrics need to be based. The Software Design Document describes
how the goals set as requirements are realised.

Appendix E. Quality Management Plan 72

E.3 Standards, Practices and Quality Control

This chapter describes the standards and practices that should be adhered to during the
project execution as well as the metrics based on which quality will be measured during and
after the project execution.

E.3.1 Standards
This section defines the standards of quality the product shall adhere to in terms of standard
procedures:

e All source code shall be documented with a short info text about parameters, function-
ality and return values for each function/ class method

e Since there is no global standard C++ style guideline and no company-wide equivalent,
none shall be given for this project. Instead, all code should be internally consistent in
its layout and style choices

E.3.2 Practices

This section defines practices to adhere to that help to maintain high quality standards:
e All implemented code should be version controlled using the project’s git repository

e Changes to code should be committed and pushed to the repository on predefined trig-
gers:

Completed implementation of a chunk of code such as a class, a function or a module
Completed refactoring step of any code chunk
o Commit messages should be meaningful and explain the changes made

e Code chunks that cannot be tested with unit tests, such as hardware interaction, should
be tested manually in regular intervals and upon any change

E.3.3 Quality Control

This section defines quality metrics the product should adhere to as well as the interval in
which measurements should be taken. It also gives a guideline on how to improve quality of
the product based on the measurements taken and how they relate to the target metrics.

Metrics

Because the project’s aim is to provide a tool that is suitable for the real-time measurement
and analysis of data, the most important metrics identified in this document are concerned
with performance and stability. Additionally, usability and configurability play a big role.

In Table E.1, they project’s key performance metrics are defined by an ID and a description
as well as the target performance indicator and, where applicable, the source of the metric.

Appendix E. Quality Management Plan 73

TaBLE E.1: Quality Target Metrics

Metric ID Description Target Perfect Source
Value Value
Performance- | The time in milliseconds | 1000 100 Requirement
Reading one iteration of data read- NF-
ing takes (rounded to next Performance
50)
Performance- | The amount of time in | 1000 100 Requirement
Transmission | milliseconds required to NF-
go through one iteration Performance

of handling gathered data
(rounded to next 50)
Usability- The maximum amount of | 180 30 -
Startuptime time in seconds the prod-
uct may require to be fully
started up and ready for op-
eration

Quality Measurement Interval

In order to track the improvement or degradation of quality based on the measurement of key
metrics, these measurements need to be taken in a regular interval. Because of the project’s
small scale a weekly measurement is assumed to yield insufficient new data, therefore the
interval of two weeks, starting on 2018-03-31, was chosen.

Quality Analysis

In order to identify the origin of quality improvements and reductions, all changes that were
made to the implementation between measurements should be summarised after each measure-
ment cycle. Furthermore, a normalise quality score should be calculated from the measured
value and the two target values using the two formulas below where S represents the score, V
is the measured value, Vt the target value and Vp the perfect value.

If V is smaller (meaning better) than Vt: S = (V — Vt)/(Vp — Vi)
If V is larger (meaning worse) than Vt: S = V/V't

These formulas would result in a number between 0 and 1 if the measured value was smaller
(meaning better) than the target value and larger than 1 if the measured value was larger
(meaning worse) then the target value.

In terms of quality, this means that all scores that are smaller than 1 fulfill the quality goal. If
a score was smaller than 0, this would mean that the measured value exceeds even the perfect
target.

Quality Improvement

In order to make use of the quality measurements taken, the next step will be to analyse their
results both in absolute perspective and in comparison to the prior intervals’ results so that

Appendix E. Quality Management Plan 74

changes in the codebase can more easily be linked to increases or decreases in quality. Based
on this link, a decision can then be made whether a change should persist or be rolled back.

Additionally, at the end of the project, all measurements should be combined into a graph to
easily identify the changes in quality over time.

Appendix E. Quality Management Plan 75

E.4 Quality Control Measurements

This chapter uses the quality metrics defined in Appendix E.3.3 and compares them to mea-
sures taken from the actual product. Each section describes one set of results taken according
to the schedule defined in Appendix E.3.3.

E.4.1 Measurements: 2018-03-31

This section describes and analyses quality measurements taken on 2018-03-31.

Measurements

Table E.2 compares the target and measured values of all quality metrics and gives a short
analysis of the relation between the values.

TABLE E.2: Quality Target Metrics Measurements: 2018-03-31

Metric ID Target | Perfect | Measured | Score | Analysis
Value Value Value
Performance- | 1000 100 150 0.06 Very good score, but some data
Reading has yet to be read, therefore
this number may still worsen
Performance- | 1000 100 100 0 Perfect score, but cellular
Transmission transmission is not enabled

yet, this is deemed to be the
most impactful handling step
Usability- 180 30 o0 0.13 Good score, several debugging
Startuptime functions still enabled that
could have an impact

Analysis
Based on the measured values for the key performance indicators, the project is on a good
track towards success: All values are within the target range, one even reached the perfect

score. However since a good amount of functionality is still missing or incomplete, changes to
these measurements need to be expected.

E.4.2 Measurements: 2018-04-14

This section describes and analyses quality measurements taken on 2018-04-14.

Measurements

Table E.3 compares the target and measured values of all quality metrics and gives a short
analysis of the relation between the values.

Appendix E. Quality Management Plan 76

TABLE E.3: Quality Target Metrics Measurements: 2018-04-14

Metric ID Target | Perfect | Measured | Score | Analysis

Value Value Value
Performance- | 1000 100 150 0.06 Very good score, but not all
Reading data has yet to be read, there-

fore this number may still
worsen; performance was im-
proved by reading GPS data in
chunks instead of one at a time

Performance- | 1000 100 100 0 No change to previous imple-
Transmission mentation

Usability- 180 30 60 0.2 Additional logging functional-
Startuptime ity had an impact on startup

time: SD card handler has
to be initialised, mutexes de-
clared

Analysis
Slight improvements to quality measurements were made by streamlining reading and startup

procedures. Upon removal of debug functionality, startup time is expected to decrease; im-
plementing the final missing functionality is expected to decrease the reading rate.

E.4.3 Measurements: 2018-04-28

This section describes and analyses quality measurements taken on 2018-04-28.

Measurements

Table E.4 compares the target and measured values of all quality metrics and gives a short
analysis of the relation between the values.

TABLE E.4: Quality Target Metrics Measurements: 2018-04-28

Metric ID Target | Perfect | Measured | Score | Analysis
Value Value Value

Performance- | 1000 100 100 0 Implementation was not

Reading changed but libraries were
updated

Performance- | 1000 100 150 0.06 now opening file on SD card

Transmission on demand instead of using file
opened on setup

Usability- 180 30 45 0.1 removed SD initialisation; SD

Startuptime libraries do not allow for mul-
tiple files to be opened —> now
opening them on demand

Appendix E. Quality Management Plan 7

Analysis

Because the SD library does not allow for multiple files to be opened and written into simul-
taneously, they will now be opened on demand. This improved the startup time but had a
negative impact on handling times. If a work around can be found, the best of both worlds
can maybe be combined.

E.4.4 Measurements: 2018-05-12

This section describes and analyses quality measurements taken on 2018-05-12. As per the
project planning, this will be the last intermediate measurement taken before the project is
concluded.

Measurements

Table E.5 compares the target and measured values of all quality metrics and gives a short
analysis of the relation between the values.

TABLE E.5: Quality Target Metrics Measurements: 2018-04-28

Metric ID Target | Perfect | Measured | Score | Analysis
Value Value Value
Performance- | 1000 100 100 0 No changes
Reading
Performance- | 1000 100 200 0.11 Implemented transmission of
Transmission data to remote server (though
unencrypted)
Usability- 180 30 40 0.07 | Disabled all debugging helps in
Startuptime the code
Analysis

Between the previous and this last intermediate measurement, the transmission of data from
the device to a remote server was implemented, although HTTPS cannot be used, therefore
the transmission is unencrypted. This is not estimated to make a difference in terms of
performance as encryption happens on the cellular module. This reduced the number of
times per second data can be handled though the value is still very much acceptable. Startup
time was, as expected, improved slightly by disabling debugging functionality which contains
a number of somewhat time-expensive system status requests to the cellular module.

Appendix E. Quality Management Plan

78

E.5 Revision History

TABLE E.6: Revision History

Date Changes

2018-05-12 Added measurements
2018-04-28 Added measurements
2018-04-14 Added measurements
2018-03-31 Added measurements
2018-03-26 Original Document

F Software Design Document

SOFTWARE DESIGN DOCUMENT
for the project

Transmission and Analysis of Vehicle

Telemetry Data using OBD-11
and Cellular Networks

[AV GmbH
by Nicholas Walter
Gifthorn, June 8, 2018

79

Table of Contents

80

F.1
F.2

F.3

F.4

Introduction i e e 81
System Overview o 0 i i i i ittt bt e e e e 82
F.2.1 Project Purpose 82
F.2.2 Project Design Aims 82
F.2.3 System Environment and Components 82
F.2.4 Freematics ONE+ 83
System Architecture. it it e e e e e 85
F.3.1 System modules 85
F.3.2 Module Design 85
F.33 TaskDesign. 92
Test DESIZI + ¢ v v v v v v v e v v vt ot e o s o oot o oo o e 95
F.4.1 Development Approach, 95

F4.2 Test Design 95

Appendix F. Software Design Document 81

F.1 Introduction

This document belongs to the project "Transmission and Analysis of Vehicle Telemetry Data
Using OBD-II and Cellular Networks" and defines it with focus on the product’s software
design. Chapter F.2 gives a rough overview over the project’s purpose and its basic design.
Chapter F.3 explains the product’s architecture first from a high-level perspective and then
in more detail by looking at the individual modules while section F.4 defines and explains the
project’s test strategies.

Appendix F. Software Design Document 82

F.2 System Overview

F.2.1 Project Purpose

The project’s aim is to create a software product to run on an arduino-based OBD-II dongle
in order to read telemetry data from a vehicle and transmit it to a webserver for analysis.
More detailed information about this can be gathered from the project plan created for this
project.

F.2.2 Project Design Aims

Based on the requirements identified in Appendix D, a list of design aims and constraints was
compiled:

Design Aims
e Ease of implementation: Where possible, design choices should be made that make
the development and later maintenance of the software easier

e Extensibility: The software should be created with future expansions in mind. Specif-
ically, additional sensors or methods of handling data could be added

e Flexibility: The software should be able to react to environment and system changes
flexibly: For example, some data source may suddenly become unavailable or connection
to cellular networks could be lost

e Performance: All functionality should be designed and implemented with the thought
of achieving reading and transmission rates as high as possible (see Appendix D for
details)

Design Constraints
e Available flash memory: The ESP32 chip has 4 Megabytes of memory available for
program space and 520 Kilobytes of RAM (see Freematics, No date(b))

e Available processing power: The ESP32 chip is based on a dual core processor that
runs at a frequency of 240 MHz (see Freematics, No date(b))

All design decisions were made with these aims and constraints as a basis.

F.2.3 System Environment and Components

As part of the design process, the system was broken down into individual relationships
between components in order to identify components of the system interacting with each
other as well as outside actors:

e The driver drives the vehicle
e The test driver connects the device.

e The device reads data from the vehicle.

Appendix F. Software Design Document 83

e The device transmits data to the remote analysis server.
e The remote analysis server analyses data items.
e The device briefly analyses data items.

By analysing these relationships for their noun phrases, a domain model was created. Fig-
ure F.1 shows the domain model.

Driver . Vehicle
drives »

y
Luses >_\ (1—reads data from >—J1

Device

1

*

1
Analysis Server

ot
(—4 analyses briefly transmits data to >j

*

Data ltem

<« analyses in detalil

F1GUuRrE F.1: Product Domain Model

The domain model helped to understand the relationships between all components and actors
in the system so that later design decisions could be made more easily.

F.2.4 Freematics ONE-+

The Freematics ONE+ is based on an ESP32 microcontroller, giving it WiFi and bluetooth
connectivity and a dual-core processor so that two tasks (such as reading and handling data)
can be executed simultaneously (see Espressif Systems, 2018). It is also equipped with a
SIM module, allowing for data transfer over cellular networks and a GPS-module to acquire
location and movement data (see Freematics, No date(b)). Figure F.2 visualises the device’s
components, their rough tasks and interactions.

Appendix F. Software Design Document

Freematics ONE+) -) .
Data Analysis
Server
ESP32 .
Microcontroller File System

[
reads Lwrites into via } ? sends data to
data AT commands

from reads data from
L A | |
LUA script
OBD GPS
interface sensor

FI1GURE F.2: Product Architecture

Appendix F. Software Design Document 85

F.3 System Architecture

This chapter shall describe the product’s system architecture in detail by going over all deci-
sions that were made regarding the design of the system overall and of individual modules as
well as the factors that went into the choices made and their results.

F.3.1 System modules
At the very beginning of the design process, before designing individual functionalities, the
system’s overall structure had to be decided upon.

Although it would have been possible to implement the desired functionality using a very
simple design such as reading and encoding data in a single function, then transmitting it
in another, effectively only creating a single source code file, this approach was abandonded
because it was not in line with the previously defined design goals: Extending and maintaining
this code would be difficult and require considerable effort.

Instead, the decision was made to split the system up into modules, each of which would fulfill
a certain task without necessarily knowing about the others’ implementations.

The program created will consist of three major modules:

e DataReading, which is responsible for gathering the desired data (initially vehicle teleme-
try and GPS data) from the sensors attached to the device.

e DataKeeping, containing functionality to store data for a short time

e DataHandling, where classes handle incoming data and prepare it for transmission,
analysis or other methods

Additionally, three support modules were designed:

e ConnectionHandling, which contains functionality of transmitting data over various in-
terfaces such as cellular networks, WLAN, Bluetooth; also houses SD card writing func-
tionality

e Logging, a module which centralizes all system logging: debugging and status messages
as well as warning and error notifications

e Util, where all functionality is housed that does not fit in any of the other modules:
distribution of constant variables, time keeping, etc.

Figure I.1 shows the class diagram resulting from this module design. Appendix F.3.2 explains
the decisions behind the individual modules’ design.

F.3.2 Module Design
This section describes the decision making process behind the design choices for the product’s
individual software modules !.

As Figure 1.1 visualises and as described in Appendix F.3.1, the system is divided into six
major components, each of which contains a set of tasks related to each other.

'In order to reduce the figures’ size and improve readibility, the display of trivial members, functions and
connections has been ommitted.

Appendix F. Software Design Document 86

Inter-Module Communication

Although the design decision made regarding modules in Appendix F.3.1 included that all
modules should, where possible, be seperate from each other, an important aspect of the prod-
uct would be the communication between some of them, especially between the DataReading
and DataHandling module, each of which only fulfills part of the system’s tasks. For this
reason, a link between these modules has to be established.

FreeRTOS, the operating system kernel used on the chip the system will be deployed to, offers
threadsafe queues that enable communication between two tasks. For this project, a queue
is used by the DataReading module to push data into so that the DataHandling module can
access it and deal with it as required.

DataReading Module

DataReading a B
0..n 1

«interface» DataReader DataReaderFacade

- readers : std::vector<DataReader*>
- dataQueue : QueueHandle_t

+ getData() : AbstractDataContainer*
+ DataReaderFacade(QueueHandle_t)
A + readData() :DataContainer*

OBDReader GPSReader MotionSensorReader

FIGURE F.3: Product Class Diagram: DataReading module

The DataReading module is responsible for the generation of data from the various sensors
and interfaces available on the device.

Each of the classes responsible for reading one of the sensors extends the DataReader interface
to allow the DataReaderFacade class to use polymorphism to call each sensor without being
aware of the specific implementation. Using the Facade pattern in the DataReaderFacade
class allows clients to interface with the module using only a single method. By passing a
QueueHandle object, essentially a reference used to deal with FreeRTOS data queues, to the
DataReaderFacade in its constructor, it is ensured that it can write all results into the queue.

Figure F .4 visualises the process of reading data from sensors and combining it into a DataContainer

object (see Appendix F.3.2).

DataKeeping Module

The DataKeeping module contains data structures to store data for a short period of time.
This is necessary because the immediate handling, and especially transmission, of data gath-
ered from sensors and interfaces at desired speeds is assumed to be too work-intensive for the
processing cores. Furthermore, this design offers a number of utilities that would otherwise
have to be implemented in other places, such as the encoding of data into JSON strings.

Appendix F. Software Design Document 87

:DataReaderFacade dc:DataContainer :DataReader xdc:AbstractDataContainer :RTOSQueue

_ collectData)

new DataContainer() i :
dc H ;
R ; :
loo [for each DataReader]
getData() g new
: e Abstract- 5
DataContainer() :
xdc L_I
R LT ELETLELPOR :
loo [for each measurement addMeasurement . :
ID] ; (id, val) . ;
| e L |
g xde |] |
addData(xdc) R
P I | |
: xQueueSend(dc) o
dc ST E --- J—|
D ELCRCECEEEEE - :

FIGURE F.4: Product Sequence Diagram: Process of reading data from sensors

The basic premise behind the module is that for each sensor reader in the DataReading
module (see Appendix F.3.2), an appropriate AbstractDataContainer subtype exists in
the DataKeeping module. When reading, each DataReader creates its own corresponding
AbstractDataContainer subtype and fills it with the acquired data. The DataReaderFacade
class then adds each of them to the base DataContainer.

By applying the Composite pattern to this module, it is assured that clients can use any
subtype of the AbstractDataContainer interface, including the DataContainer class, without
checking whether all leaf nodes are present. Furthermore it is possible for users of the data
to combine multiple DataContainer objects into one so that e.g. the getJSON() method only
needs to be called once instead of one time for each DataContainer.

Implementing the AbstractDataContainer interface also means that each subtype is able to
produce a JSON-representation of itself. In the case of the DataContainer class, this means
to combine the results gathered from all leaf nodes to a single JSON string.

Figure F.6 visualises the process of encoding all data contained in a DataContainer object
to a JSON string.

Appendix F. Software Design Document

DataKeeping
1
0..n («interface» AbstractDataContainer
DataContainer

- std::vector<AbstractDataContainer*> : containers

+ addData(AbstractDataContainer*) : void

GPSDataContainer

.:

+ getJSON() : std::string

OBDDataContainer

1 - OBDValues : map<int, float>

+ addMeasurement(int, float) : void

- date : unsigned long [get]
- time : unsigned long [get]
- lat : long [get]

- lon: long [get]

- alt :int [get]

- spd : unsigned byte [get]
- sat : unsigned byte [get]
- heading : int [get]

SensorsDataContainer

-1 - SensorsValues : map<int, float>

+ addMeasurement(int, float) : void

FI1GURE F.5: Product Class Diagram: DataKeeping module

:DataContainer

result:std::string

getJSON() !

xdc:AbstractDataContainer

1| new std:string

__result

loop,/ [for each AbstractDataContainer]
getJSON() ~ 5

! tri H

S J _S_?_”_$_ Mg .

append

(jsonString) 5

______ osult || i

_______ result i i

FIGURE F.6: Product Sequence Diagram: Process of encoding data in a Dat-
aContainer to JSON

Appendix F. Software Design Document 89

DataHandling Module

DataHandling
(1 0..n Q/

DataHandlerFacade «interface» DataHandler

- handlers : std::vector<DataHandler*>
- dataQueue : QueueHandle_t

+ handleData(DataContainer*) : void

+ DataHandlerFacade(QueueHandle_t)
+ handleData(DataContainer*) : void A

AnalysisDataHandler TransmissionDataHandler SDDataHandler

FI1GURE F.7: Product Class Diagram: DataHandling module

The DataHandling module is structured very similar to its counterpart, the
DataReading module. Using the Facade pattern makes it very easy for clients to supply
data to an arbitrary number of handlers. Because all handlers implement the DataHandler
interface, the DataHandlerFacade class can simply iterate over a list of DataHandler objects
and call their handleData() method instead of knowing about and precisely calling each in-
dividual handler. This makes the entire module very easy to extend if future additions to the
system require it.

When called, the DataHandlerFacade proceeds to supply the given data to each of the
DataHandler subtypes sequentially for them to handle. With the intention of simplifying
memory deallocation, all data handling happens in the same thread.

Each of the handlers uses the data for its own purpose: The AnalysisDataHandler carries out
a quick analysis and may trigger actions based on its results, the
TransmissionDataHandler is responsible for the transmission of data to remote servers and
devices outside of the product’s scope and the SDDataHandler handles the logging of data to
local storage.

Figure F.8 visualises the process of handling data contained in a DataContainer object (see
Appendix F.3.2) on the example of the TransmissionDataHandler.

At first, the number of messages (DataContainer objects) waiting in the RTOSQueue is checked.
If several are waiting, a new DataContainer object is created into which the others are inserted
so that they can all be handled at once. If only one message is waiting, the object is used
as is. This is made possible by the application of the Composite pattern in the DataKeeping
module (see Appendix F.3.2).

Afterwards, the final object is passed to various DataHandler subtypes to handle the data.
Figure F.8 shows this on the example of the TransmissionDataHandler, which passes the
JSON string representing the data on to the CellularHandler class. Other DataHandlers
handle data differently.

Finally, the DataContainer object is deleted, freeing up memory so that the system can
continue its cycle.

Appendix F. Software Design Document 90

:DataHandlerFacade :RTOSQueue :TransmissionDataHandler :CellularHandler dc:DataContainer
_watchQueue()Ai uxQueueMessages
- e Waiting()

at [messageCount > 1] - new DataContainer()

e do : LJ
Sl S e .
loop /| | [for messageCount tir‘:nes]

xQueueReceive() _ |

idc:DataContainer

| addData(idc) | R
e J
[else]

xQueueReceive()
dc
o . :
FhandleData(dC)
: : handleJSON :
handle:Data(dc) ot (dc->getJSON) ‘i
R , |
P—) | s | %

FI1GURE F.8: Product Sequence Diagram: Process of handling data contained
in a DataContainer object.

ConnectionHandling Module

The ConnectionHandling module is not immediately responsible for any actions concerning
telemetry data but instead offers a general interface to connect the system to outside data
sources and targets over the available interfaces (Bluetooth, cellular connections, WLAN) as
well as read/ write actions on local SD storage. Since each of the classes aims to offer a
service completely disconnected from the others, there was no need of any structural patterns
in this module. By making all classes but the SDHandler implement the ConnectionHandler
interface however, the possibility to use them in an abstract manner for example in the
TransmissionDataHandler class (see Appendix F.3.2) has been maintained.

Logging Module

The Logging module’s purpose is very simple: Because the end goal is to have to the product
run its tasks on two separate threads, logging is also bound to happen from more than
one source concurrently. Because intersected messages could possibly make logs difficult or
impossible to read, a synchronisation had to happen. While the Logging module fulfills this
purpose, it also applies a global format to all logging messages by prepending "|[WARNING|"
or "[ERROR]|" where applicable as well as a timestamp to the initial log. Furthermore it also

Appendix F. Software Design Document 91

ConnectionHandling

«interface»
ConnectionHandler

A

'
B

CellularHandler

WLANHandler

BluetoothHandler

SDHandler

F1GURE F.9: Product Class Diagram: ConnectionHandling module

Logging

«interface» LoggingHandler | 0..n

11

LoggingFacade

+ log(std::string toLog)

----1 SerialLogger

+ getinstance() : LoggingFacade*
i----1 BluetoothLogger +log(std::string toLog) : void

: +logWarning(std::string toLog) : void
+logError(std::string toLog) : void
SDLogger - doLog(std::string toLog) : void

FiGURE F.10: Product Class Diagram: Util module

offers a single interface to write logs to different targets, such as the serial interface, Bluetooth
or an SD card.

Util Module

In addition to the previously described main modules, the Util module offers functionality
that is frequently used elsewhere but does not fit in the domain of any single module: the
config.h and constants.h files contain information that is often required as parameter and
does not need to be changed during runtime. This also makes it easier to configure the
program at compiletime, since all configurations can be changed in one central point. This
has the advantage that in order to change how the system works, no deeper knowledge of the
underlying code is required. It also contains functions such as a toString() helper and other
functionality that can not be associated with only one class or module.

Finally, it also contains the TimeKeeper class, which houses the funcionality of keeping the
system time up to date. Because the microcontroller the device is based on is unable to
keep its system time up to date between power cycles, the current time is read from an NTP

Appendix F. Software Design Document 92

Util
Util TimeKeeper
Config
+ getinstance() : TimeKeeper*
+ updateTime(long newTime) : void
Constants + getTimeStamp() : std::string

FIGURE F.11: Product Class Diagram: Util module

server upon startup and saved there. Whenever a client calls the getTimeStamp() method,
the current time is updated based on the milliseconds elapsed since the last update and saved.

F.3.3 Task Design

Because the ONE+’s computing power is very limited, it is important to use what is available
efficiently. This section explains the basic structure behind the code that will be deployed
to the device and define the individual tasks that will be created in an effort to effectively
employ the available resources. Furthermore, a rough attempt at designing threads in terms
of priority and execution order will be made.

Task control functionality

By default, the ONE+ comes with FreeRTOS, a real time operating system, pre-installed.
FreeRTOS offers functionalities to create threads that can be run independently from each
other and simultaneously. It also supports blocking tasks so that those with higher priority
can execute while lower-priority tasks yield.

In addition to general task control, it also offers utility functionality such as threadsafe queues
that can be used for communication between two tasks (see FreeRTOS, 2017b) or resource
access managemant (see Barry, 2016) as well as functions that delay execution of a task by
a number of either milliseconds or processor ticks, depending on configuration, while other
tasks are executed (see FreeRTOS, 2017c).

Program structure

Since the project’s intention is to develop an application to run on the ESP32 microcontroller,
its structure at the very core consists of the setup() and loop() functions typical for arduino-
like devices (see Arduino, No date(b)): Upon system startup, the setup() function is called
once: Its responsibility is the set up of all system-relevant modules and components, such
as instantiating classes, powering up attached devices etc. Once this function concludes,
the loop() function will be called in an infinite loop until the device is powered down (see
me-no-dev, 2017a).

Because the ESP32, untypically for small-scale microcontrollers, comes with two processing
cores, two tasks can run simultaneously. By taking advantage of this fact and dividing the
program into two main tasks, performance can be increased. However this comes at the cost
of a larger design effort.

Appendix F. Software Design Document 93

For the purpose of the system to be designed and implemented in this project, two main tasks
have been identified: the reading of data from sensors and interfaces attached to the device
and the handling of this data in several forms. These two tasks have been reduced to the
calling of two functions in the main.cpp file: readerLoop() and handlerLoop(). Because
the default loop() task is also responsible for a number of maintenance functions, such as
preventing integer overflow in the timing function micros() (see me-no-dev, 2017b), that must
be called regularly, these functions had to be extracted and moved to one of the two main
tasks. Because the readerLoop() is deemed to be less likely to fail or stall during execution,
the decision was made to use this instead of the handlerLoop().

The two separated tasks are then connected to each other by using a threadsafe queue
as data buffer (see Figure 1.1), into which the readerLoop() task can write data and the
handlerLoop() task can extract data from to work on it.

Thread Design

As mentioned in Appendix F.3.3, the products main functionality (reading and handling
data)is separated over two threads: While one is responsible for the gathering of data from
various sources, the other uses the same data and handles it with various methods. This
seperation was created in order to fully utilise the performance power offered by the micro-
controller’s two processing cores.

Furthermore, the decision was made to divide processor time up into chunks. If the task
completes before its allocated time slot expires, the task will idle up until the next chunk
starts. This way, there is no danger that the reading tasks will run significantly more often
than the handling tasks, causing the data queue to fill up and data to get lost.

Figure F.12 visualises how the two tasks are split over the processing cores: After the system
has been set up completely, the two tasks are started. While one core starts working on the
data reading tasks (green) immediately, the second core idles (white) for slightly more than
half of a time chunk so that data can be read and put into the queue. Afterwards, it starts
working on the data handling process (red). After they finished their work, both cores wait for
the time chunk to be completed before repeating. Since both tasks wait for the same length of
time chunk, this procedure means that the data handling core always lags behind the reading
core for slightly more than half a chunk. Theoretically, this means that the data queue should
never contain more than one DataContainer object, given that handling always works and
never requires more time than allocated. If, for some reason, the handling task should take
longer than anticipated, the reading task will still write into the queue as it normally would:
The handling tasks will check on its beginning how many messages are waiting in the queue
and, if necessary, combine them to handle them at once (see Appendix F.3.2).

Appendix F. Software Design Document

94

r Data Handling

Core 1 Idle

Core 0

Q_Jﬁ Data Reading

Time

FIGURE F.12: Product Class Diagram: Util module

v

Appendix F. Software Design Document 95

F.4 Test Design

Because of long deployment times and because debugging functionality is limited to print ()
statements instead of breakpoints and variable inspection at runtime, verifying that code is
working as intended on an embedded system such as the one this project is being carried out
with takes considerably more effort than it would when developing a desktop application. For
this reason, it is especially important to properly design and carry out software tests through-
out the implementation and validation phase. This chapter defines the testing approach that
will be used during this project.

F.4.1 Development Approach

Given the system’s modular design (see section F.3), the decision was made to make use
of test-driven development throughout the implementation phase of the project. The basic
premise of test-driven development is that, before any actual production code is written, tests
for each module and tasks are implemented, which describe a fully functional system. Based
on these tests, the system will then be implemented, constantly in an effort to reach 100 per
cent success across all tests. However, because many features of the product rely on working
closely to the target hardware, it is not possible to test these in an automated fashion. Instead,
those features will be tested manually during development.

This has the advantage that results and procedures are clearly defined and development will
not be hindered by making important decision on the fly. Additionally, given that tests are run
automatically on each new build, any breaking code changes can be identified immediately.

F.4.2 Test Design

Based on the decision to make use of test-driven development, the next step is to define what
types of test to use during the implementation and validation phase of the project.

When applying test-driven development, the use of unit tests de facto comes by default, there-
fore they were applied in this project as well: Each module and each of the contained classes
will be described by a number of unit tests so that development can start by implementing
the methods and functions they test.

Additionally, the decision was made to carry out real-world tests in a semi-regular schedule:
By plugging the target device into a test vehicle and driving for a reasonable amount of time,
performance and usability can be tested in a production-like environment.

G Research Report

SOFTWARE FEASIBILITY STUDY REPORT
for the project

Transmission and Analysis of Vehicle

Telemetry Data using OBD-11
and Cellular Networks

[AV GmbH
by Nicholas Walter
Gifthorn, June 8, 2018

96

Table of Contents

97

G.1 Introduction @ @ i i i i ittt ittt 98
G.1.1 Context e e e 98
G.1.2 TheDevice e 98
G.1.3 Environment e 99

G.2 Target Systemt 99
G.2.1 Tasks e e 99
G.2.2 Restrictions e 100

G.3 Research Execution ¢t v v v vttt oo v o uusoos 101
G.3.1 Core Questions 101
G.3.2 Methodology 102
G.3.3 Results e 102

G.4 Conclusion i i i i i i i i i e e e e e e e e e e e e e e e e 105

Appendix G. Research Report 98

G.1 Introduction

This document describes the feasibility study carried out as part of the project "Transmission
and Analysis of Vehicle Telemetry Data Using OBD-II and Cellular Networks". The aim
behind the feasibility study is to determine whether it is possible to use the device used for
the gathering and transmission of data during the main project for real-time analysis of the
same data in order to identify invalid test runs.

This report should answer the question whether the analysis described above can be imple-
mented as part of the main project or alternatively whether it can be implemented as an
additional project. In addition, some general hints towards the implementation should be
given, such as where data can be obtained from or how things can be implemented.

G.1.1 Context

The system in question would be used as part of the testing routine for newly developed cars
and car parts at TAV. Because new parts need to be tested thoroughly, for both validation and
trouble shooting, a considerable amount of effort goes into carrying out test drives with tightly
regulated parameters. These parameters can include but are not limited to the distance that
should be driven, the speed at which the car should drive, what type of roads etc. Because the
number and nature of these parameters can be very complex, it is often difficult for drivers
to keep track of their performance: Sometimes completed test drives turn out to be invalid
when data is checked. In this case, all effort was for nothing and the test drive needs to be
redone.

In order to prevent this, the system proposed should keep track of the parameters and inform
drivers about invalidation so that test drives can be aborted early.

G.1.2 The Device

In order to judge whether the proposed addition to the project is feasible, it is important to
understand the target system and its capabilities. This section describes the hardware and
its capabilities in detail.

The device in question is the Freematics ONE+, an open-source microcontroller-based inter-
face to a vehicles on-board diagnostics (OBD) port. It is based on the ESP32 microcontroller
and offers interfaces to cellular network connections and the global positioning system (GPS)
in addition to the OBD interface (see Freematics, No date(b)).

Hardware Performance

The microncontroller the device is based on offers two processing cores with a tact frequency
of 240MHz as well as 520 kilobyte of RAM (see Freematics, No date(b)).

Hardware Interfaces

The ONE+ is equipped with Bluetooth and WiFi capabilities offered by the ESP32 chip as
well as a cellular module and two external I/O ports that are used to connect the GPS antenna

Appendix G. Research Report 99

but can be repurposed. Additionally, a micro-SD card can be written to or read from (see
Freematics, No date(b)).

G.1.3 Environment

This section describes the environment in which the proposed system would be used.

Vehicle

Since its main purpose will be to analyse vehicle data, the most important aspect of the sys-
tem’s environment is the vehicle it will be deployed in. In all cases relevant to this report, the
vehicle will be either a recently developed model or one that is still currently in development.
Therefore it can be assumed that the OBD-II protocol is supported.

Available Data

Given that the device is powered over the OBD-II connector, the available data always includes
all data that can be read over this interface. This includes basic data like vehicle speed, engine
RPM and throttle position but also more obscure data (see Wikipedia, No date).

Additionally, the device’s GPS sensor can be used to obtain location information while the
cellular module can be used to read basically arbitrary information from various online APIs.

G.2 Target System

This chapter specifices the system for which this feasibility study is being carried out by its
desired features, the tasks it will have to fulfill and some restrictions that apply.

G.2.1 Tasks

The basic task the system should carry out is the real-time analysis of incoming vehicle and
GPS data in order to identify invalid test runs. In order for this to work, the system should
read and keep track of said data, comparing it to target values. The following subsections
describe each of the subtasks in more detail.

Reading Data

In order to fulfill its tasks, the first step for the device is to read data. Specifically, the tasks
require the availability of position data as well as vehicle data such as speed, engine load,
currently selected gear etc. Table G.1 lists all required data.

Information about what data is required was gathered from interviews and inferred from usage
examples.

Appendix G. Research Report

100

TABLE G.1: Data required to carry out live analysis

1D Name Description
1 Current Time The current world time accurate to milliseconds
2 Engine RPM Number of revolutions the vehicle’s engine is mak-
ing per minute at this moment
3 Vehicle Speed The speed the vehicle is driving at this moment
4 Engine Load The amount of power the vehicle’s engine is cur-
rently putting out towards the wheels
5 Currently The gear selected in the vehicles gearbox at this
selected gear moment
6 Location The global position the vehicle is currently at
7 Road Type The type of road the vehicle is currently driving on
8 External The atmospheric conditions outside the vehicle at
conditions this moment (temperature, barometic pressure, hu-
midity)
9 Other OBD Data | In addition to engine RPM, vehicle speed and en-
gine load, the OBD interface offers various types of
data to connected readers

Tracking Data

After data has been read from the sensors, the system’s task is to keep track of it. This
consists not only of storing read values but also calculating others from it. For example, one
of the core tasks would be to calculate distance driven from either GPS position markers or
vehicle speed and time.

Comparing Data To Target Values

Finally, the tracked data needs to be compared to the target values set at the beginning of
the test drive. As soon as one of the parameters set becomes invalid, the system should give
notice to the driver.

User Interaction

Because the actual device’s only way to directly communicate with a human driver is a small
status LED, all user interaction needs to be channelled through an external device with which
the system needs to communicate in real time. This external device could then inform the user
about the status and (in)validation of parameters. Furthermore it could be used to change
configurations or set parameters at the beginning of the test drive.

G.2.2 Restrictions

Of course, there are some restrictions in how the technologies available can be used to imple-
ment the set tasks. Firstly, user interaction must be restricted to an absolute minimum as
the standard use case is that the user is driving a vehicle which severely restricts how much
attention can be put on watching readouts or other information obtained from the system.

Appendix G. Research Report 101

Secondly, the device the system would be deployed to is very limited in terms of computing
power:

e Available flash memory: The ESP32 chip has 4 Megabytes of memory available for
program space and 520 Kilobytes of RAM (see Freematics, No date(b))

e Available processing power: The ESP32 chip is based on a dual core processor that
runs at a frequency of 240 MHz (see Freematics, No date(b))

These hardware restrictions need to be taken into consideration when developing the real-time
analysis tool.

G.3 Research Execution

This chapter explains the execution and results of the feasibility study described in the previ-
ous chapters by defining the core questions to be answered, the methods used and explaining
the final results.

G.3.1 Core Questions

Based on the tasks the system would have to fulfill as defined in Appendix G.2, this section
defines the core questions to be answered as part of the feasibility study. Based on whether the
questions can be answered affirmatively or some features are not possible to implement, the

result will define whether the system can be implemented in this configuration. The following
subsections each define one of the core questions and describe it in more detail.

Data Availability

Is it possible to gather all required data from either a sensor, an online API or another source?
The data in question is listed in Table G.1.

Data Handling

Is the device capable of handling the acquired data in ways suitable to handle all tasks?

User Interaction

Is there a way in which a user can interact with the device?

Performance

Can the device carry out the required number of data reading / tracking actions?

Integration

Can the system be integrated into the data transmission project as a subsystem?

Appendix G. Research Report 102

G.3.2 Methodology

This section describes the methodologies that were used in order to answer the core questions
set in Appendix G.3.1.

Since all questions are based on whether or not the device is capable of fulfilling a given func-
tionality or providing some data, the research consists of comparing the device’s capabilities
according to its product page and specification sheets as well as experience gathered during
the execution of the main project to what is required for the live analysis.

The questions themselves were derived from customer interviews carried out previously as
well as analysis of some usage examples given by the customer.

G.3.3 Results

The following subsections answer the questions designed in Appendix G.3.1 in detail, giving
exemplary solutions or recommendations where applicable.

Data Availability

This subsection is concerned with defining the availability of the data types defined in Ta-
ble G.1.

Current Time While the device itself, given that it is based on a very basic microcontroller,
does not have functionality to get the current time, there are three ways to acquire it at
runtime in the user code running on the device.

Firstly, if the GPS antenna is attached to the device, it is possible to extract the time sent
along with the GPS signal (see alronzo, No date) and save it for later use.

Secondly, given that a connection to cellular networks can be established via the device’s
cellular module, the current time can be obtained from a network time protocol (NTP) server
as it was implemented in the main project (see Appendix F.3.2).

Finally, an external device could be connected to the microcontroller via either WLAN, Blue-
tooth or its serial port and supply the time either once upon startup or repeatedly.

The main difficulty regarding time keeping on the device is the fact that there is no such thing
as an internal clock that could keep track of time independently from the user code running
on the device. For this reason, keeping the time up to date based on the device’s processor
cycle count needs to be taken into account when implementing the software.

This means that the current time (data ID 1) is available in the right device configurations,
given that some effort is put into the implementation.

OBD Data Data IDs 2, 3, 4 and 9 (see Table G.1) require the availability of vehicle OBD
data on the interface attached to the device. Given that the device is powered over the
OBD interface (see Freematics, No date(a)), the presence of the interface and therefore the
availability of data can be assumed.

Appendix G. Research Report 103

Selected Gear Given that the OBD interface’s purpose is to expose mainly engine and
emission data, other vehicle-related data such as the currently selected gear is not directly
available over the OBD interface (see Wikipedia, No date). However, because the OBD
interface design includes the high and low cables of the vehicle controller area network (CAN)
bus, it is theoretically possible to extract more data, although it would require additional effort
(see Kanda Admin, 2012). Whether or not the information that can be extracted from the
CAN bus includes the currently selected gear depends on the manufacturer’s implementation.

In summary, this means that there is no single solution to obtain the currently selected gear
from the vehicle that would work in all cases.

Location As explained in Appendix G.1.2, the Freematics ONE-+ device can be equipped
with a GPS receiver. This means that, if the antenna is present, the device can be programmed
to read the current location in latitude and longitude coordinates from this sensor.

However the location is limited to pure coordinates, any meta information on these coordi-
nates, such as what country they belong to, has to be read from an external source.

Road Type As described in Appendix G.3.3, the device is capable of obtaining the current
location’s coordinates, but not the relevant meta information for this location. This means
that the device has to rely on external sources, such as Google’s Geocoding API (see Google
LLC, 2018) or similar services, that are able to match geographical coordinates with the
appropriate meta information.

This in turn means that theoretically it is possible to obtain the required information, however
it is connected to considerable effort and most likely financial resources which may outweigh
the possible benefits of the proposed system.

External Conditions Because a test drive’s parameters may include external conditions
(temperature, humidity, barometic pressure), the device should be able to read them from a
source. Although sensors that supply this type of data exist (see Sparkfun Electronics, No
date), the Freematics ONE+ device does not offer a sufficient number of I/O pins to attach
them. For this reason, obtaining atmospheric data directly is not possible.

Similar to how time can be obtained though, it is possible to program external devices to
collect the data and relay it to the telemetry device via WLAN, Bluetooth or the serial port.

Summary In summary, the question "Is it possible to gather all required data from either
a sensor, an online APT or another source?" can be answered with "Yes", although obtaining
some specific data, such as atmospheric conditions and the currently selected gear as well as
the type of road the car is driving on, may require more effort than can be justified for the
project.

Data Handling
The proposed system’s tasks include the handling of data after it has been read. More
specifically, parameters may take four distinct forms:

e Maximum Value: A maximum value for a value that may not be overstepped (e.g.
"The car must never exceed a speed of 100 km/h")

Appendix G. Research Report 104

e Minimum Value: A minimum value for a value that may not be understeppd (e.g.
"The car’s engine must never run at lower than 700 RPM")

e Average Value: A value’s average must stay at (or close to, as defined by the pa-
rameter) this target value (e.g. "The car should use 7.1 litres of fuel per 100km on
average')

e Range: A value must stay within a range defined by upper and lower limit for the
value (e.g. "The test drive must incorporate between 10 and 50 kilometers of driving
on highways")

e Sum: The cummulated sum of a value must be at (or close to, as defined by the
parameter) this value (e.g. "The test drive must consist of 100km in length")

Given that the device is based around the ESP32, a fully programmable microcontroller, the
implementation of these parameters is possible without effort. Depending on the number and
type of calculations however, the calculations may put a strain on the processing cores and
the system RAM. Without experiments however, it is for all practical purposes impossible to
determine how strongly performance will be impacted.

This means that the question "Is the device capable of handling the acquired data in ways
suitable to handle all tasks?" can be answered with "Yes".

User Interaction

Given that the system’s main purpose is to communicate the imminent or fulfilled breach of
a paramter to the user, it is important that the device can interact with the user adequately.
Furthermore, before the system is actually started, a user should be able to add,/ remove/
change parameters for the system to watch. This way, the device can be used for a new test
drive without requiring a firmware flash.

Unfortunately the device does not offer much in terms of human interface devices per se: Only
a single LED can be controlled by the user code and there is no way to for a user to directly
interact with the device such as buttons or dials. As mentioned in Appendix .3.3, there is
also no way to add these because of the devices insufficient number of I/O ports. Although
two exist (see Freematics, No date(b)), they are blocked by the GPS antenna.

For this reason, all user communication must take place via an external device. This could
for example be connected via either the device’s serial port, Bluetooth or WLAN. This means
that the question "Is there a way in which a user can interact with the device?" can be
answered with "Yes", although it requires the development of an external communication
device or software (e.g. a smartphone app) to realise.

Performance

While for all practical purposes it is impossible to calculate this accurately and proof it beyond
doubt, the experience gathered during the implementation of the main project, the gathering
and transmission of telemetry data, implies that the device’s performance is sufficient for
these tasks. Given the device’s reasonable hardware specifications (see Appendix G.1.2), no
performance issues should arise.

Although the customer interviews and example analyses carried out as part of this feasibility
study did not include specific performance measures such as the rate at which data should be

Appendix G. Research Report 105

gathered, the project team believes that a "reasonable" reading and analysis performance is
a non-issue.

This means that the question "Can the device carry out the required number of data reading
/ tracking actions?" can be answered with "Yes".

Integration

The final question to be answered during this feasibility study was "Can the system be inte-
grated into the data transmission project as a subsystem?".

Due to the fact that one of the project’s core design aims was to make the final product
easily extendable, the implementation of analysing the already available data and reading
some more data from different sources is most definitely feasible without unreasonable effort.
In combination with the already resource-heavy main project however, the device’s hardware
specifications may proof to be insufficient.

Although, as mentioned in Appendix G.3.3, the analysis of data alone is unlikely to be an issue
in terms of computing power, the main project already is designed to make use of all available
resources. With the additional tasks to fulfill, it is possible that the device’s computing power
is insufficient.

In summary, this means that, although the addition of the analysis to the main project is
no problem in terms of software implementation, the hardware may not support it and the
question "Can the system be integrated into the data transmission project as a subsystem?"
must be answered with "No".

G.4 Conclusion

This chapter summarises the results of the research execution described in Appendix G.3 and
combines them in order to answer the question whether or not the proposed project is feasible.
Table G.2 gives an overview over the answers and remarks, if any.

TABLE G.2: Data required to carry out live analysis

Number | Answer Remarks

1 Yes Some data may take considerable effort to ac-
quire

2 Yes -

3 Yes The user cannot directly communicate with the

device, instead a bridge in form of e.g. a smart-
phone app is required

4 Yes -

5 No While the software implementation of adding
the analysis to the main project is no issue,
the device’s hardware specs are most likely in-
sufficient

This shows that all but one of the core questions could be answered affirmatively. The only
answer that had to be answered with "No" was whether the proposed analysis system could
be integrated into the existing telemetry transmission project’s solution.

Appendix G. Research Report 106

In conclusion this means that, although parts of the proposed system may take considerable
effort to implement, it can be implemented as a stand-alone solution. The addition of this
proposed system to the main project’s software solution however is most likely infeasible due
to performance limitations.

0O Otk Wi -

H Example JSON File

107

[
{
"time'":1472110107000,
"configurationName":"MyConfigName_v42.ncf",
"data":
{
"some_attribute":2,
"other_attribute":42
}
}’
{
"time":1472110209000,
"configurationName":"MyConfigName_v42.ncf",
"data":
{
"some_attribute":5,
"other_attribute":105
}
}

108

I Product Class Diagram

109

Appendix I. Product Class Diagram

r)R(Surfpuey :weider(] 9ouonbeg 10npoig 1T d¥YNDI]

:]
sasn.
)
pioa : (6oT03 Buws::pis)6oop - _wmmnvn_h_m soog,
Buws::pis : ()dweigawi]eb + SJUBISU0D
PIOA : (8w mau Buoj)awi] ayepdn + 66
Jodesyjawi] : ()eoueisupeb + Jsbboyjoolenig --
Byuon
L Jabboeuss |-
1adaayawi) mn apeoesBuIbboT AN
(60710} Buiys::pis)bo| +
nn L
sdwejsawiy 10} Sasn
uo | 19|pueybuibbor «eoepajur»
d1N J0} sesn
Buibbo
s J9|pueHds [106] jui : Buipeay -
[106] @3Aq paubisun : jes -
. . [196] @3Aq paubisun : pds -
I0A : (JBOJ} ‘JUI)IUSWSINSESNPPE +
PIOA : (1e0}) ‘Jul) PP _.%m i
J19|pue 0olen --y i 196] Buo) :uoj -
IPUEHL00IeNIE i <1eoj} ‘Jui>dew : SaNEASIOSUSS - f---~1 Twm“ Buo) : Je| -
: : [196] Buoj paubisun : sy -
: Jaulejuoelegsiosusg : [16] Buo] peubisun - yep -
19IPUBHNYIM : :
: PIOA : (JBO}} ‘JUI)IUBLISINSESPPE + : Jaulejuojeledsdo
i ~ <jeoyj ‘ui>dew : senfeAqdo -
la|pueHJie|n||@d H | H PIOA : (,JourejuoQeleqioessqy)elegppe +
Jaureluode1eaago :
Q m\ o SI9UIRJUOD : <,J9UIRJUODEIEQIORNISqY>I0]00A IS -
Buws::pis : (NOSMeB + H JeUIEIUODEIEq
J9|pUBHUOI}OdUUOD -
= «BoBpBIUI Jsulejuojeleqioeasqy «odepsjul» o
u-Q 1
Bujpueqjuonossauuo) Buidaayjeleq
‘ . . ananpSOlY T ;
sasn
|
|
ls|pueHereaQds 18|puUBHEIEQUOISSIWISURI | ls|pueHeleqgsisAjeuy 19peayI0SusSUooN 1opesySdO lepeayado
: woyspeas | | I e
- JaurejuoDeleq: (Jeyegpeas + AN
q _ploa: (.JoureluoDEIRQ)RIRgSIPURY + (1 e|pueHenanp)epeoeJiepesyeleq +
PIOA : (,JoureluODEIEQ)eIRgaIPURY + (1" eipueenanp)epeoeiapuetHeleq + Ojul Sa}lIM _ JaureluoneIRQIoRASqY | ()B1eqieb +
¢ : J ﬁ 1 8|pueHananp : enanpejep -
1 8|pueHeNaNY : 8nanpesep - <,Jopeayeje>10}09A::p}s : Siopeal -
<,J9|pUBHEIEQ>I0J00A: S : SI9|pUeY -
dpedejiapeayele;
Ja|pueHejeq «@deajul» apeoe4is|pueHeleq pedediapesyeleq lapeayejeq «d@depisul»
7 K I]

L

) BulpueHereq

L

J

Buipeayeleq

	Summary
	Declaration of Authorship
	List of Figures
	List of Tables
	List of Abbreviations
	Glossary
	Introduction
	Context
	The Company
	The Problems
	Graduation Assignment
	Freematics ONE+

	Report Structure

	Planning
	Deliverables
	Scope
	Software Development Framework
	Time Planning

	Feasibility Study
	Purpose
	Target System
	Research Questions and Methodology
	Results

	Analysis
	Stakeholder Analysis
	Risk Analysis
	Requirements Analysis
	Requirements Elicitation
	Requirements Evaluation

	Software Design
	Design Parameters
	Design Aims
	Design Constraints

	Basic Structure
	Setup and Loops
	Modules

	Module Design
	Inter-Module Communication Design
	DataKeeping Module
	Structural Design
	Behavioural Design

	DataHandling Module
	Structural Design
	Behavioural Design

	Time Keeping

	Multi Threading Design
	Test Design
	Code Tests
	System Tests

	Quality Management
	Quality Management Approach
	Quality Control

	Implementation
	New Technologies
	Serial Communication
	Cellular Module Control: AT Commands

	Challenges
	Memory Management
	AT Command Implementation
	Task Timing
	Certificate Installation
	Certificate Usage
	Problem Description
	Problem Analysis
	Fix Attempts
	Current Status

	Result

	Validation
	Software Tests
	Unit Tests
	Integration Tests

	Quality Validation
	Requirement Comparison
	Contradiction Between Results

	Conclusion
	Recommendations
	List of References
	Project Plan
	Context
	The company
	The department

	The Problem
	Problem description
	Solution draft
	Expected results

	The Project
	Assignment
	Deliverables
	Software
	Research

	Scope
	Software
	Included
	Excluded

	Research
	Included
	Excluded

	Organisation
	Stakeholders
	People

	Testing and Quality Assurance

	Planning
	Initial planning
	Deadlines
	Communication

	Revision History

	Stakeholder Analysis
	Identification
	Prioritisation

	Risk Analysis
	Introduction
	Risk Identification
	Risk Evaluation
	Risk Handling

	Requirements Analysis
	Introduction
	Purpose of the System
	Objectives
	Scope
	Software
	Included
	Excluded

	Research
	Included
	Excluded

	Proposed System
	Overview
	Requirement Analysis
	Requirement Elicitation
	Requirement Evaluation

	Functional requirements
	Requirement F-Cellular
	Requirement F-OBD
	Requirement F-GPS
	Requirement F-JSON
	Requirement F-Time
	Requirement F-Configuration
	Requirement F-SD-Data
	Requirement F-SD-Data-Discard
	Requirement F-SD-Logging
	Requirement F-Bluetooth-Control

	Non-Functional requirements
	Requirement NF-HTTPS
	Requirement NF-Performance
	Requirement NF-Extendibility
	Requirement NF-Flexibility

	Requirements Prioritisation

	Revision History

	Quality Management Plan
	Introduction
	Referenced Documents
	Management
	Organisation
	Tasks

	Documentation
	Standards, Practices and Quality Control
	Standards
	Practices
	Quality Control
	Metrics
	Quality Measurement Interval
	Quality Analysis
	Quality Improvement

	Quality Control Measurements
	Measurements: 2018-03-31
	Measurements
	Analysis

	Measurements: 2018-04-14
	Measurements
	Analysis

	Measurements: 2018-04-28
	Measurements
	Analysis

	Measurements: 2018-05-12
	Measurements
	Analysis

	Revision History

	Software Design Document
	Introduction
	System Overview
	Project Purpose
	Project Design Aims
	Design Aims
	Design Constraints

	System Environment and Components
	Freematics ONE+

	System Architecture
	System modules
	Module Design
	Inter-Module Communication
	DataReading Module
	DataKeeping Module
	DataHandling Module
	ConnectionHandling Module
	Logging Module
	Util Module

	Task Design
	Task control functionality
	Program structure
	Thread Design

	Test Design
	Development Approach
	Test Design

	Research Report
	Introduction
	Context
	The Device
	Hardware Performance
	Hardware Interfaces

	Environment
	Vehicle
	Available Data

	Target System
	Tasks
	Reading Data
	Tracking Data
	Comparing Data To Target Values
	User Interaction

	Restrictions

	Research Execution
	Core Questions
	Data Availability
	Data Handling
	User Interaction
	Performance
	Integration

	Methodology
	Results
	Data Availability
	Current Time
	OBD Data
	Selected Gear
	Location
	Road Type
	External Conditions
	Summary

	Data Handling
	User Interaction
	Performance
	Integration

	Conclusion

	Example JSON File
	Product Class Diagram

