The Success of Agile Software Development

~ Graduation Thesis ~

‘{:\JLR;]

Author : Raditeo Warma

Issue Date : Jund"82012

© 2012 Fontys University of Applied Sciences, Eiadén

The Success of Agile Software Development

Graduation Thes's
Fontys University of Applied Sciences

HBO-ICT: English Stream

Data student:

Family name , initials:
Student number:

project period: (from — till)
Data company:

Name company/institution:

Department:
Address:

Company tutor:
Family name, initials:
Position:

University tutor:
Family name , initials:
Final report:

Title:

Date:

Warma, Raditeo
2188207
February — June 2012

The Lectorate Softwaral@uand Testing of
Fontys ICT

Rachelsmolen 1, 5600 AH Eindhoven, Building
R1

Brunekreef, Jacob
Project Leader

. Zijimans, Jack

' The Success of Agile Software Development
' June 7, 2012

Approved and signed by the company tutor:

Date: June'8 2012

Signature:

The Success of Agile Software Development

Preface

This report was written for fulfilling requirements of graduation to finish my study and acquire a
bachelor's degree at Information & Communication Technology department, Fontys University of
Applied Sciences. This report is carried out as a result of my graduation project at lectorate Software
Quality and Testing, Fontys ICT. The lectorate Software Quality and Testing has been participating in the
EQuA project that has started in the fall of 2010. The title of my project is “The Success of Agile Software
Development." The assignment of the project is to find theoretical and practical evidence of the success
of agile software development.

In this project, the author was under supervision of Mr. Jacob Brunekreef as the company mentor and
Mr. Jack Zijlmans as the university mentor. Thanks to all interviewees. Mr. Brian Teunissen and Mr.
Patrick Verheij, they were consultants, that work at Inspearit B.V., Netherlands. Mr. Dody Muktiwibowo,
he was a consultant, that works at Astra Graphia Information Technology, Indonesia. They were willing
to spend their time to be interviewed as the resources for my research. For all web-survey-respondents,
| say thank you for the participations in my web survey. Special thanks to Mr. Jacob Brunekreef for his
kind assistances, guidance and advices.

Eindhoven, June 8" 2012

Raditeo Warma

The Success of Agile Software Development

Table of Contents
= - [ol T OO P U P PP UU PO PRRRTRROPPUPRRIPPO 3
TaDIE OF CONETENESeeaeeeeeiee ettt e h e s bt e s b e s bt e s st s st e eae e sate et e e b e s bt e be e beenbeenneens 4
UMY <ttt ettt e e e ettt et e e e e e tb bttt e e e e e s e b s et e e e e e e e s uasebeeeaee e e nssbaeeeeesesaanbebaeeeeesaaasseeeeeeeessannsanaaeesesanannns 6
LG (o T-Y- T o USSP 7
1. INTRODUCTION ..ttt ettt et e ettt e e e ettt e e e e e s s abaeeeeeeeeaaas b et eeeees s nnbbeeaeeesaaaussbaeeeeesesannrenaaaeennn 8
2. COMPANY PROFILEc.eeeiteiiteeiteee ettt ettt ettt b e bt she e sae e sat e st st et e et e e s e et e e b e e beebe e neennes 9
3. ASSIGNMENT OVERVIEW ...ttt ettt ettt et et b e b e sbe e saeesaeesanesanesateemteenneeeeen 10
AL RESEARCH. ...ttt ettt ettt b e bt et e bt e s bt e s bt e she e sae e sat e eat e et e et e et e et e e b e e be e beenbeeanees 11
D CON CEPTS ettt ettt ettt e e e e e bttt e e e e s e e e r bt e ee e e e e s s b b baeeeeesaasbeteeeeeee s nnbabaeeeeesannsreeeeeeeeaann 12
5.1 The Principle of Agile Software Developmentccveiiiciiiiiiciiee e e e 12
5.2 Human Factor on Agile METNOASuiiiiiiiieccee et ree e e 13
5.3 Agile Software-Development METhOAScoocuiiiiiiiiie et et 13
5.3, L EXEremME PrOSram MG cooeeieeeeeeeeeeeeese sttt bttt bttt ettt et et e eeeaeeeaaaee 15
5.3L2 SCIUM (o s sra e e e san 16
I TR V=41 L= 1V, oo 1= [T o =SSN 17
5.3.4 Adaptive SOftware DeVEIOPMENT........cociiiiiiiiie ettt e e s e s bae e s snareeees 18
B. FINDINGS. ..ceeiieetttte ettt ettt e e e e ettt e e e e s e b bttt e e e e e s a s bebeeeeeesaaasbeteeeeeaasassbaaaeeeeesaassraeaeeesanannn 20
6.1, LItErature REVIEWuiiiiiiiiiiiiiiiiitic ettt be e s ssa e s ara s 20
6.1.1. REVIEW IMELNOMS ...ttt st st st st s s eee s 20
6.1.2. Data Extraction and Synthesis of FINAINGSuviiiiiiiiiiiiicic e 21
5.0.3. RESUIES ..ttt et et ettt b e e b e e e st e s bt e e b et e he e e s b e e e be e e be e e ante e s bee e reeenes 22
6.2. Expert Interview and WED SUIVEYoooiiiiiie ettt et e s s aee e s 25
L0 B o d o 1= o g =T VA=Y PP PP PPPPPPPPPPPPPPPRE 25
B.2.2 WD SUIVEY ...ttt ettt e ettt e e ettt e e e e tt e e e e e ata e e e e staeeeeasteeesansaeeesssaeeesnstaeesannseeenas 26
7. CONCLUSIONS & RECOMMENDATIONSoiiiiiienieeniiesiee sttt ettt ettt sb e sb e beesree s saee s s s 33
BV [14T] o H T U TP U ROV PUOTOPSURINt 34
21T o FTeT ={ =T o] o1V ST 35
ApPPeNndixX A: LItEratlure SUMIMAIY . ..o e ecieee sttt e s e s e e e st e e s s beeesssabeeesssbeaesssseeeenssenessnnsens 39
Appendix B: Agile Expert INterview QUESTIONSccccuiiieiiiiiiieecieeeeite e sree e e sre e e svee e s sabae e e srre e e seabaee e ennees 56

The Success of Agile Software Development

Appendix C: Web Survey
Appendix D: Project Plan

The Success of Agile Software Development

Summary

In the last decades, business community desires solutions that able to provide faster and better
responses to change in software development. Many proposals regarding the improvement of software
development methods have been suggested in the scope of standardization and measurement of tools,
practices, techniques and software process.

Recently, many remedies for improvement have come from practitioners with years of experience. They
called their methods as Agile Software Development. They claimed that it was possible to provide better
software quality with higher customer satisfaction compared to traditional methods. This claim has
made a big impact on the software development world. It was becoming a subject of debate among
software practitioners for years. Some of the practitioners agreed with this claim. Some others are
doubted. The rest flatly refused on this claim.

This project aims to find the proofs regarding the claim from scientific articles and practices in the field
of work. During the project, the researcher gathered and analyzed 33 articles about the relevant topics.
These articles were grouped into two groups. The first group, 30 articles, reviewed the success of agile
software development. The second group, three articles, reviewed the adoption of agile software
development. From the first group, the researcher gathered 29 articles including some comparative
studies that support the above claim. One study that, according to the author, claimed that agile and
traditional methods satisfy their respective customers under a wide range of different situations. In
terms of company reports or company case-studies, agile and traditional methods cannot be compared
with each other since each method was implemented in different projects with different initial
conditions, people, and circumstance.

Furthermore, in order to gather data from practitioners of software development, the researcher
interviewed three agile consultants from the Netherlands and Indonesia. The results of the interview
provide subjective information regarding agile software development. In addition, the researcher ran a
web survey consisting of 23 questions. The researcher invited more than 279 prospective participants
from both the Netherlands and Indonesia. In the beginning, the researcher did not have a plan to utilize
a web survey to collect data. Over the time, the project did not go according to project plan. Thus, to
obtain data in a bulk in short time, the researcher ran this web survey instead of using interviews.

The Success of Agile Software Development

Glossary
AM Agile Modeling
AMDD Agile Model Driven Development
ASD Adaptive Software Development
CASP Critical Appraisal Skills Program
CRC Class Responsibility Collaborator
DSDM Dynamic Systems Development Method
EQuUA Early Quality Assurance in software production
ICT Information and Communication Technology
JT Just-in-Time
00 Object Oriented
QA Quality Assurance
§1..S33 Study 1...Study 33
SDLC Software Development Life Cycle
SQA Software Quality Assurance
TDD Test Driven Development

XP Extreme Programming

The Success of Agile Software Development

1. INTRODUCTION

These days, software development has been increasing. Demand of software application in
organizations and government agencies is increasing. This is because of the growing awareness of the
organizations regarding importance of software application to help business processes. This software
application would improve performance of the business process, speed up the business processes, and
reduce costs that have to be paid by the organization.

In software development, there are some things that need to be noticed ranging from human resources
that handles the project, up to what method that should be applied in the software development
process. One of the software development methods is Agile Software Development.

The word “agile” means fast, lightweight, nimble, and alert. “Agile” was used as a term to describe the
concept of a process model that is different from the concept of the process model that already exists.
The concept of agile software development was coined by Kent Beck and sixteen colleagues by stating
that agile software development is a way for building software by doing it and helping others build it all
at once.

Agile software development with its characteristics those are fast development, lightweight processes,
nimble and alert to changes was claimed as better development approach compared to the traditional
approach that already exists like the waterfall model. Agile was claimed that it was able to provide
higher software quality with higher satisfaction of the customer. This claim needs to be evidenced. The
claim was the trigger of “The Success of Agile Software Development” project to prove the above claim.

All the topics are represented in seven chapters. Chapter 1 represents a brief introduction about agile
software development and its relation to the assignment. Chapter 2 represents description of company
profile where the assighnment was run. Chapter 3 represents description of the assignment, initial
condition and research questions. Chapter 4 represents introduction to the research. Chapter 5
represents introduction to the concepts of agile software development and briefly describes several
agile methods. Chapter 6 provides findings of the research. Chapter 7 represents conclusions and
recommendations. Additionally, attachments (literature summary, interview questionnaire, web survey
guestionnaire, and project plan) can be found in appendix.

The Success of Agile Software Development

2. COMPANY PROFILE

Fontys ICT is a leading and innovative Institute that provides education at Bachelor, Master, and
Associated Degrees. Nearly 2000 students are taught everything regarding practice of ICT field. One of
the lectorates of Fontys ICT is the lectorate Software Quality & Testing where | am working for. The
lectorate Software Quality & Testing provides students a guideline in order to form practitioners who
are competent in related knowledge and skills with software quality assurance (QA) and software
testing.

From the fall of 2010, the lectorate Software Quality & Testing has been participating in the EQuUA
project. EQUA is an acronym for Early Quality Assurance in software production. The project aims at the
detection and correction of errors in the process of software production, in a stage as early as possible.
It stated otherwise: the project aims at achieving a quality standard as high as possible in a stage as early
as possible.

Both in the scientific world and in the software-development community, the quality problem is
addressed. The goal of the EQUA project is to bring together knowledge and insights from both sides,
and from there to create practical solutions.

The EQUA project is a collaboration of eight partners: two universities of applied science, three scientific
institutions and three IT companies (Fontys, Hogeschool van Amsterdam, CWI, Sogeti, TU Delft, Info
Support, SIG, and TU/e). Fontys ICT manages the project.

The Success of Agile Software Development

3. ASSIGNMENT OVERVIEW

Agile software development is gaining interest from academia and industry. Although many articles and
books have discussed agile software-development methods, few of them discussed the impacts of agile
methods on software quality and customer satisfaction. Agile supporters claim that the use of agile
methods leads to better software quality with higher customer satisfaction compared to the use of
traditional methods. Importantly, evidence for this claim was needed. This was the starting point of this
research, and resulted in the following research questions:

1. What theoretical and practical evidence can be found in the literature for the claims mentioned
above?

2. What practical evidence can be found in IT companies applying agile software-development
methods?

3. What selection factors of agile methods instead of traditional methods are influenced by
cultural aspect?

This project aims to analyze information that has been obtained in order to answer the research
questions. Project results are purposed to prove that agile is used and successfully works, and it is
resulting in better results than traditional methods. The researcher is not going to examine the success
and failure factors of the use of both methods.

10

The Success of Agile Software Development

4. RESEARCH

Agile software development methods were created to respond to the business world asking for fast,
agile, and lightweight software-development techniques for anticipating the rapidly growing software
industry. Agile claims that its methods provide better software quality with higher customer satisfaction
compared to traditional methods such as the waterfall model.

The researcher is expected to find evidence for the above claim, and find sufficient information
regarding agile adoption and the results of the use of agile methods in scientific literature and practical
in software companies.

In order to do that, the researcher is going to use three gathering information methods: literature
review, expert interviews, and a web survey. The researcher gathers scientific literature such as journal
papers, reports, surveys, books, etc., which contains needed information. Furthermore, to find practical
evidence in software companies, the researcher has to interview some agile experts and make a web
survey that addresses experience of software development practitioners in the software development
field.

By the interview and survey, the researcher tries to obtain the information regarding opinions and
experience of the practitioner during working in the software-development project. Then the researcher
analyzes the information from both sources to get the answers for the research question, and put the
results in the report.

11

The Success of Agile Software Development

5. CONCEPTS

The word “agile” means fast, lightweight, nimble, and alert to changes. “Agile” was used as a term to
describe the concept of the process model that is different from the concept of the process model that
already exists. The agile software-development concept was coined by Kent Beck and sixteen colleagues
by stating that agile software development is a way of building software by doing it and helping others
build it all at once.

In agile software development, interaction and personnel are more important than processes and tools.
Working software is more important than complete documentation. Collaboration with clients is more
important than contract negotiation. Other than that, responsiveness to changes is more important than
following plan. The agile software development process enables tolerance to the changing of
requirements, so that the changes can be quickly addressed.

5.1 The Principle of Agile Software Development

One of the main characteristics of agile software development is the capability of team to respond to
changes. Why? Because the changes are the main thing in software development such as changing
requirements of software, changing team members, changing technology, etc. In addition, agile
software development also emphasizes the importance of communication among the team members,
between technical people and businessmen, between developer and manager. Another feature is the
clients to be part of the development team. These characteristics are supported by 12 principles that
have been set out by Agile Alliance. According to the Agile Alliance (2012), these principles are for those
who want to succeed in application of agile software development:

Client satisfaction is the top priority by producing products early and continuous.
Accept the changes of requirements, even at the end of development.

Deliver products in weeks (2-8 weeks).

Business people and developers work together every day throughout the project.
Build software in the environment of people who are highly motivated.
Face-to-face communication is an effective and efficient communication.
Working software is the main measure of project progress.

O NV R WN PR

Stable support of sponsors, developers, and users is required to maintain a sustainable

development.

9. Attention to the technical intension and good design enhances nature of agile software
development.

10. Simplicity

11. Good architecture, requirements, and design emerge from a self-organizing team.

12. Periodically, the team conducts self-evaluations and finds ways to be more effective and

efficient.

12

The Success of Agile Software Development

The twelve principles have become the basis for models that have the nature of the agile process. These
principles attempt to deal with three critical assumptions about typical software projects:

1. Software requirements are difficult to predict from beginning and always change. In addition,
client priorities often change over the project.

2. Design and construction often overlap. It is difficult to estimate how far the design is required
prior to the construction.

3. Analysis, design, development and testing cannot be predicted as desired.

5.2 Human Factor on Agile Methods
The key of human factors in this model is based on the needs of people and team, not the otherwise. To
be able to be successfully implementing an agile process model, there are some important keys:

Competence: developer’s skills in building and knowledge about the process of building.
Focus: each team member has the same focus even though they have a different role in the
teams.

3. Collaboration: developers working with clients, other team members and managers.

4. Ability of decision making: the development team has autonomy to take decisions related to the
project and technical issues.

5. Fuzzy problem-solving ability: the team is able to finish in sorting out the important issues to be
solved immediately or later.

6. Mutual trust and respect: excellent teamwork is supported by a sense of trust and mutual
respect one and another.

7. Self-management: the team sets itself up, manages the process to suit its environment, and
schedules itself to deliver the results.

5.3 Agile Software-Development Methods

The above points reveal that agile software development is a software development approach that has a
different concept from the traditional approach. It is a new concept that emphasizes human
collaboration, response to changes, and results of working software. It overrides contract negotiation,
following plan, and complete documentation that are regarded as waste. However, agile software-
development methods still employ activities that are owned by traditional methods, but in a different
way. Both agile and traditional methods employ Analysis, Design, Implementation, and Test (this series
of activities is known as SDLC). The distinction is, in the agile way, SDLC is performed more frequently.
This activity ensures software quality assurance (SQA) is performed more frequently. Normally, an SDLC
is completed within an iteration. Figure 1 will give an idea how it happens.

13

The Success of Agile Software Development

Time

Waterfall

Waterfall SQA

Static Techniques

Agile

Agile SQA

W)
n

—
1)

Figure 1. Software quality assurance timeline (Ming Huo et all, 2004)

14

The Success of Agile Software Development

Figure 2 gives an overview of a development process in iteration cycles until the product is ready to
release to market.

Integrate and Test

Continuous visibility
(Clients, Users,
Developers)

Release to
Yes
market

Start
Initiate project

Define requirements

Figure 2. Iteration process of agile methodology

The below parts will explain several variants of agile software development methods, with aim to
provide an overview how the methods work for the development process. The following methods are
included in agile software-development methods:

5.3.1 Extreme Programming

Extreme Programming, known as XP, has been published by Kent Beck in 1999. XP is using the object-
oriented approach in its process model. Planning activity in this method is gathering user stories from
client in which the client sets the priorities. Each story sets prices and period of development. If too
large, the story can be broken down into several smaller stories. XP has a principle in design activity that
is simplicity. XP utilizes CRC cards (Class Responsibility Collaborator) to identify and organize the classes
in OO0 concept. In case XP encounters difficulties, a prototype is built (this is named spike solution), then
refactoring is performed, which is developing design of software after it has been written. Encoding
activity includes preparation of unit tests prior to coding. This activity is used as the focus of

15

The Success of Agile Software Development

programmers to create software. Pair programming is done for real-time problem-solving and real-time
QA (quality assurance). Furthermore, testing activity is using the unit tests that were prepared prior to
encoding (2(Jeffries, 2003).

J\

Design

Simple design (CRC),
Spike solution (prototyping)

L 7

< Coding
-

Plannin -
s Refactoring*

Pair programming,
Unit tests,
Continuous integration

User stories,
Values,

Acceptance criteria,
Iteration plan

Test
Release

Unit tests,
Continuous integration,
Acceptance testing

Software increment,
Project velocity computed

*Refactoring is the process of improving the internal structure of a
software system while maintaining its functionality (external behavior)
of the system. Refactoring is the process of fixing the design after
coding.

Figure 3. Workflow activity of extreme programming (Umi Proboyekti)

5.3.2 Scrum

Scrum has been introduced by Jeff Sutherland in the early of 1990s, and further development has been
carried out by Schwaber and Beedle. There are principles that are emphasized by Scrum in its process
model. The small size of the team, enables smooth communication, reduces costs, and empowers the
team members. Development process can adapt to the changing technical and changing business issues.
The process is generating software increments. People who develop software are divided into small
teams. Documentation and testing continue to be done after the software has been built. In Scrum,
developer is able to state that the product is finished whenever it is needed.

Scrum activities include Backlog, Sprints, Scrum Meetings, Demo. Backlog activity: Backlog is a list of
requirements, prioritized by the client. This list can grow depending on the situation of the project and
condition of the client. Sprint activity: units of work, that are required to meet the requirements that
have been set out in the backlog within development time, are specified in a time-box (1-4 weeks).
During this process, there is no new backlog addition. Scrum meeting activity: a meeting of 15 minutes
every day at the beginning of the day to evaluate what was done, constraints, and target completion.
Demo activity: delivery of software increment to the clients, the software increment is demonstrated in
front of the client and evaluated by the client (2(Kniberg, 2007).

16

The Success of Agile Software Development

Daily scrum
meeting

24 hours
Product backlog
as prioritized by

product owner

- V
Sorint Potentially
Sprint backlog P shippable product
increment

Figure 4. Scrum activities (Odne, 2010)

5.3.3 Agile Modeling

Many situations of software construction require developers to build a large and vital business function.
The range and complexity of the software should be modeled, so that the software can be understood.
Problems can be divided, becomes smaller, and quality of can be maintained at each step of software
development. AM is a practical methodology that helps developers to make better documentation and
modeling the software system. AM is a group of values, principles and practices for modeling software
that can be applied on software development projects effectively. The principles of AM are 1) create a
model in order to determine the purpose before making the model, 2) using multiple models: each
model represents a different aspect of another model, 3) travel light: save the models that have a long-
term course, 3) content is more important than appearance: modeling presents information to the right
audience, 4) understand the models and tools that used to create software, 5) adaptation locally
(Ambler, 2002).

17

The Success of Agile Software Development

Initial requirements envisioning

LN Initial architectural envisioning

Identify the high-level scope

Test Driven Development (TDD)
(hours)

. Identify initial “requirements stack” ;
e ekl e Identify an architectural vision :
Iteration O: Envisioning
. Modeling is part of iteration planning effort
Iteration modeling (hours) . Need to model enough to give good estimates
. Need to plan the work for the iteration
Reviews e Work through specific issues on a JIT manner
(optional) . Stakeholders actively participate
Model storming (minutes) . Requirements evolve throughout project
All iterations . Model just enough for now, you can always come
(hours) back later

Develop working software via a test-first approach
Details captured in the form of executable
specifications

Figure 5. Agile Model Driven Development (AMDD) (Ambler, 2002)

5.3.4 Adaptive Software Development
ASD has been proposed by Jim Highsmith as a technique for building complex software and systems. The

underlying philosophy is human collaboration and team self-regulation. Activities that occur during ASD
process model are Speculation (Planning), Collaboration and Learning. Speculation (Planning) activity:
adaptive planning cycle that uses initial information such as “missions” from client, project constraints

and basic needs to be defined in series of software increments (software product, which is periodically
submitted). Collaboration activity: people who are highly motivated to work together, complementary,
willing to help, work hard, skilled in their fields, and communicate problems to produce an effective

solution. Learning activity: development team often thought they already knew everything about the
project, but they are not always so. Therefore, this process makes the team learn more about the
project through three ways: 1) focus group: the clients and users give input to the software

development, 2) formal technique reviews: comprehensive ASD team performs review, 3) postmortems:

ASD team performs introspection on the performance and processes (Proboyekti, 2008).

18

The Success of Agile Software Development

Planning

Adaptive cycle planning:
mission statement,
Project constraints,
Basic requirements,
Time-boxed release plan

Collaboration

Requirements gathering,
JAD,
Mini-specs

Release
Software increment:)
Adjustment for subsequent

cycles

Learning

Component implemented/tested,
Focus group for feedback,

Formal technical reviews,

Post mortems

Figure 6. Workflow activity of ASD (Proboyekti, 2008)

19

The Success of Agile Software Development

6. FINDINGS

6.1. Literature Review

6.1.1. Review Methods

For this literature review, studies were eligible to put in the review if they presented empirical data on
agile software development. Case studies of academic research that employed students of ICT program,
and practical research that employed professional developers were included. Studies that focused on
single techniques or practices, such as pair programming, scrum, xp, and collaboration-software-process
were included. The studies were excluded if they did not present empirical data or if the main focus of
the studies was not agile software development or otherwise was outside the scope of my study.
Inclusion of the studies was not restricted to any year and specific type of articles, also the studies were
written in English and Indonesian language. The review included qualitative and quantitative studies.

The reviewed studies met criteria for analysis by containing some theoretical evidence regarding
customer & developer satisfaction, productivity, development costs, quality of produced software when
use agile software development. In addition, the reviewed studies were containing some evidence
regarding the effects of cultural dimension on adoption of agile software-development. Search strategy
included electronic databases of articles such as conference proceedings, journals, books, etc. The
following electronic databases were searched: ACM Digital Library, IEEE Xplore, Springerlink, and Google
Scholar.

Search relevant articles in the electronic databases

v

Exclude studies based on its titles

v

Exclude studies based on its abstract and conclusion

v

Obtain the main articles

Figure 7. Phases of literature selection process

20

The Success of Agile Software Development

As shown in the Figure 7, systematic review process has four phases. Phase 1, search relevant titles,
abstract, and keywords of the articles in the electronic databases using the following search key terms:
agile software development, agile methods, agile vs. waterfall, agile adoption, benefits of agile methods,
the success and failure of agile methods, scrum, extreme programming, xp, collaborative programming.
Relevant citations were entered into Excel.

Phase 2, exclude the studies from its titles. Determine the titles of all studies that resulted from phase 1,
whether they are relevant to the systematic review. Since | got several hits on the articles related to
agile. At this phase, | excluded the studies that were clearly not regarding agile software development.
Or, the studies were not empirical and were not independent. However, the titles were not always a
clear description of what an article is about.

Phase 3, exclude the studies on behalf of its abstracts. At this phase, | excluded the studies that were
not focused on agile software development. Or, the studies did not present empirical data. However,
sometimes abstracts were giving poor description, misleading, and little indication of what was in the
full article. The abstract was not always clear whether a study was empirical or not. Therefore, | included
all studies that indicated a form of experience of implement agile software development. They consisted
of information that met the criteria for analysis.

Phase 4, obtain the primary articles and studies. At this phase, | have had some studies that | thought
were relevant to my research study, and would satisfy the research questions. In each article, there is a
bibliography that presented some titles of other studies that would have relevance for my research
study. Therefore, | picked some titles then reenact the systematic review phases, and so on.

6.1.2. Data Extraction and Synthesis of Findings
During phase 4, data was extracted from each of all main studies included in this systematic review
according to a predefined extraction form (Tore Dyba, 2008).

Table 1. Data extraction form

Study Identifier => Unique id for each study

Bibliographic reference => Title, author, year, source

Study aims and objectives => The aims and objectives of the study

Sample description => Size, professional, students

Study’s setting => Industry, products, practices and processes used
Control group => Yes/no, number of groups, sample size

Data collection => Interviews, questionnaires, forms

Data analysis => Qualitative, quantitative

Findings and conclusions => The findings and conclusions from the study

This form helped me to record full details of the articles under review and to be specific regarding
relevance of each article with my research questions.

21

The Success of Agile Software Development

In order to synthesize the extracted data from the main studies, | employed seven phases of meta-
ethnographic methods (George W. Noblit, 1988), as presented below:

Getting started

Deciding what is relevant to initial interest.
Reading the studies

Determining how the studies are related.
Translating the studies into one another
Synthesizing translations

No ks wNR

Expressing the synthesis

In a meta-ethnographic synthesis, studies can relate to one another in one of three ways: they may be
directly comparable as reciprocal translations; they may stand in opposition to one another as
reputational translations; or taken together they may represent a line of argument (Britten N., 2002).

This process of reciprocal and reputational translation and synthesis of studies achieved three things
with respect to answering our overarching question about the benefits and limitations of agile software
development (Tore Dyba, 2008). First, it identified a set of higher-order interpretations, or themes,
which recurred across studies. Second, it documented that agile software development contains positive
and negative dimensions. Finally, it highlighted gaps in the evidence about the applicability of agile
methods to software development.

6.1.3. Results

| identified 33 empirical studies on agile software development. | split the studies into two groups. The
first group, containing 30 studies, included survey, report, interviews, questionnaires, and case study
investigating impacts and effects after introducing of agile software development. The second group,
containing three studies, reviewed the adoption of agile development methods.

With respect to the kinds of agile method that have been studied, as shown in the Table 2, nine studies
(30%) reviewed agile methods in general, six studies (20%) reviewed Extreme Programming practice.
Five studies (17%)reviewed other methods that refer to internal methods, which used in the study.
Scrum and Pair-Programming have the same portion in this studies overview, which are four studies
(13%). Two studies (7%) reviewed Collaborative Software Process.

Table 2. Agile methods used in the study

Agile method Amount Percentage
General 9 30
Extreme Programming 6 20
Other 5 17
Scrum 4 13
Pair Programming 4 13
Collaborative Software Process 2 7

22

The Success of Agile Software Development

As mentioned above, the first group of studies contains surveys, reports, interviews, questionnaires, and

case study reporting the effects and impacts after adopting agile software development. The following

aims from each study are described in the Table 4.

Table 3. Study aims on introducing agile software development

Study
S1
S2
S3

sS4
S5

S6, 526,
$27, 528,
S29

S7

S8

S9
S10
S11
S12
S13
S14
S15
§16, S17
$18
§19
S20
S21
S22
$23
S24

$25

Study aim

measures the interest in agile methods

gains insight into the status of organizations currently implementing agile

tests a research model that hypothesizes the effects of five characteristics of agile on
stakeholder satisfaction

develops an agile model for managing overtime, performance, and cost

examines effects of Scrum implementation in a software company, in terms of overtime
and customer satisfaction

reports experience implementing agile methods

examines whether the use and result of agile methods are as effective as the use and
result of plan-driven methods in terms of customer satisfaction

examines the effectiveness of pair programming on economics, satisfaction, design
quality, problem solving, team building and communication, and staff and project
management

compares Personal-Software-Process and Collaboration-Software-Process effects on the
productivity, cycle time, and product quality.

presents a real case of agile customer engagement showing prerequisites, benefits, costs
and risks in a software product setting

compares QA techniques between Extreme Programming and Spiral Model

compares QA abilities and frequency between agile practice and waterfall model
investigates whether agile methods change and improve project management practices
in software companies

analyzes the effects of using XP for constructing commercial software

compares XP and traditional-approach’s performance

measures the success rate in the use of agile methods

observes the effects of transition from poor and individualized programming approach,
to extreme programming practice

compares the quality and productivity when using pair programming and solo
programming

develops a data and workflow management system for scientists conducting clinical
research

compares the state of the art investigating issues and advantages when using agile and
incremental development models

investigates the perception of the bottlenecks, rework changes, and avoidable work,
when migrating from a plan-driven software development to agile practice

compares the programming performance when using pair programming and individual
programming

observes the impacts of collaborative software development to the software engineering
course

investigates the impact of pair programming on student performance, persistence, and

23

The Success of Agile Software Development

perception
S30 analyzes evolution patterns for a system developed using XP

| found twenty-nine studies suggesting that implementing agile software development benefits the
adopter. Five reports regarding experience of agile adoption (S6, S26, S27, S28, S29), show us five
different companies that were switching from traditional development methods to agile software
development. The reports tell how agile could work in big-scale projects, and the agile team delivered
high-quality software successfully even at the first time of agile adoption. Agile adoption gave actual
benefits to the adopters such as time-to-market was decreased, team productivity was increased, and
customer satisfaction was increased. This finding indicates that agile is not only for small-scale projects,
but it works for big projects as well.

All this time, people think that big scale projects that consisting of more than 10 people in an agile team,
is not ideal for agile, and it would become a great obstacle for agile projects itself. Study S6 reports
about Lockheed Martin’s experience regarding adopting agile with more than 200 co-located people
(distributed locations). According to the reports, implementation of agile was difficult and requires the
right tool for this type of agile project, but at last the agile project achieved success with a 10% increase
in productivity, product quality, and customer satisfaction. This finding does not correspond with how
people normally think about agile. Obviously, agile possible to be used for a big project with hundreds of
people in it, even at distributed locations. In addition, as agile gives positive effects on the company
projects, agile affects software-engineering students as well. This is stated in five studies (S9, S15, S23,
S24, S25). In general, the five studies reveal that students using agile to complete assignments have
higher productivity than students using traditional methods.

Ten comparative studies (59, S11, S12, S13, S15, S19, S21, S23, S24, S25) that have compared agile
software development and traditional methods, found some findings that showed superiority of agile
software development over traditional methods. The findings told that agile has advantages as the claim
that is investigated in this research. Indeed, agile leads to better performance and productivity of
development team, and faster time-to-market. Agile provides higher software quality and customer
satisfaction than traditional methods do. However, | found one study (S7) by Donald L. Buresh that
according to him, both methods satisfy their respective customers under a wide range of different
situations. According to him, in company reports or case studies of a company, agile and traditional
methods cannot be compared with each other. Since, each method was implemented in different
projects with different initial conditions, people, and circumstances.

The second group of studies (531, S32, S33) reviews adoption of agile software-development methods,
affected by national and organizational culture. There are three studies reviews it. The first one, reviews
regarding how national culture can affect adoption of agile methods in Europe, USA, and Australia. The
author concluded that the chances for successful adoption of agile methods are strongly related to a low
masculinity index where women and men have the same modest, caring values. Another one is low
acceptance of the power distance index in which the less powerful members of society accept and
expect that power is distributed equally. The two remaining studies review organizational culture. In

24

The Success of Agile Software Development

summary, the organizational culture aspect that has most effects on the adoption of agile methods is
the human aspect. The human aspect includes the mindset of people in an organization, how they are
thinking and understanding the concept of agile software development, how agile works for them, how
agile is different from the old method. Mainly, this aspect is very influential in the executive level in the
organization. Since, at this level all decisions are made.

6.2. Expert Interview and Web Survey

| employed two ways to collect data from the field of work, personal interviews and a web survey. | have
made two kinds of questionnaires, an expert interview questionnaire (it can be seen in appendix b) and
a web survey questionnaire (it can be seen in appendix c). The aim of these questionnaires was to find
practical evidence from field experience of practitioners. The purpose was to gather information from
software developers and other practitioners in the field of software development. It was regarding their
experiences and opinions during they worked in software development projects.

These two questionnaires, both the personal interview questionnaire and the web survey questionnaire,
have been piloted by my colleagues to know whether these questionnaires would be understandable
and answerable, and my project leader was assessing whether it was proper or not.

6.2.1. Expert Interview

In personal interviews, | interviewed three experts of agile software development, actually they are agile
consultants. Two persons from the Netherlands and one person from Indonesia. Since | am not a trained
interviewer, and | had a lack of language skills. It was rather difficult to collect data in the interview way.
As expected earlier, sometimes interviewees did not understand what exactly | meant with my
guestions. It was resulting in the answers that did not satisfy the interview questions. Therefore, | had to
repeat the questions while explaining the point of the questions. In addition, the resulting answers were
rather subjective, which makes data interpretation was difficult to be colligated.

As a note, results of interviews are subjective opinions regarding agile software development, since the
interviewees are agile consultants. The results are approximately as follows:

There are two strongest points of agile implementations, the first is a mandatory use of requirements,
because a lack of determined requirements would lead to more cost of the overall project. The second is
early defect detection by early testing. Early testing enables to tackle the biggest risks first. It would save
cost. The later defects are found in the project would lead to exponentially higher cost to solve the
defects.

Actually, in the project, there are many stakeholders that cannot be satisfied by a function of software.
There are business owners, managers, employees, even end users, customers of a customer. They have
different requirements and interests on the software. So it is become quite complex requirements and
problems that have to be solved. Developer teams normally cannot perfectly understand what the
stakeholders want, since the stakeholders themselves do not know exactly what they really want. In the
agile way, the developer team and business people will have a formal workshop, an interview, or they
just sit together a whole day to determine and prioritize functional design based on business values and
daily business activities. Communication between them is emphasized on direct communication, in one

25

The Success of Agile Software Development

place. They define and refine details of the requirements together. Indirectly, the business people help
the developer team to understand the requirements from the business people better. Understanding of
the requirements makes it easier to interpret the all requirements into functions of software. It has to
be done in full-day planning sessions to capture the details of the requirements. The first-half planning
day, they determine the requirements and then decide what will have to do in the iteration. The second
half planning day, they decide how to implement the requirements, and how it will look like. This kind of
practice is performed in every iteration.

The sense of business is hard to understand by the developer team, including changes in business that
influences software development. Therefore, agile emphasizes close communication between the
developer team and the business people. In every increment, the stakeholder gets demo software. The
demo software enables the stakeholder to monitor whether the changes in software development have
been according to what they ask for.

There is a Scrum board or visual management that enables the stakeholders to know what the
developer team is working on. In the end of every increment, the stakeholder gets demo software. They
will know what they are getting. Then they can determine functional priority, what they want to develop
or change. What they want to stop or drop. What new functions they want to put in for next iteration,
since the stakeholders do not know what they really want and need at the beginning of the project.

Agreement between the developer team and the customer is made in the informal way, without rigid
contract, and the agreement is done in every iteration. Sometimes the developer team cannot find
technical solution for the asked requirements. Therefore, they will discuss other alternatives with the
customer. It makes that both the developer and the customers are convenient.

The changes can be influenced by internal factors such as internal politics issues of the customer,
external factors such as what competitors of the customer have in their products whereas the customer
has not.

In years of experience in the agile practice, the agile consultants always get positives feedback from the
project owners due to implementation of agile resulting in fully meeting their needs, better product
quality, lower cost, and shorter project duration. These benefits may not exist if the project is done by
using traditional methods. In order to examine the feedback from the project owners, the agile
consultants employ a formal survey or interview, a satisfaction index, or just looking at the customer
expression and asking about what they feel.

6.2.2 Web Survey

In another way, | employed a web survey to collect data from software-development practitioners. |
planned to use this method towards the end of the project. | made the web survey questionnaire,
gathered email address of prospective participants, and | was contacting the prospective participants in
less than two months approaching deadline of my project. | have tried to made survey questions as
simple as possible and as straightforward as possible to be understood and answered. | made the
questions in multiple-choice. | hoped the answer options would ease the participants to answer, and
help the participants to determine the answers faster. | expected the participants would think the web

26

The Success of Agile Software Development

survey would not take too much time, or it would not be wasting their time. However, behind the
simplicity of the survey questions, | did not ignore its effectiveness to provide information that should
be obtained to satisfy the research questions.

The web survey took two weeks. It was run from May 16™ until June 1%. It was too short for a web
survey. However, | needed to collect data in a bulk in the short time due to the deadline. By using this
method, the questionnaire of the web survey was quite easy to be broadened via email, forum website,
mailing-list, and other Internet media. Yet, it was not about just spread the questionnaire out. From
hundreds email invitations, there are only dozens responses from people who got invited to fill the
questionnaire in. Most people ignored the web survey, since they thought the web survey did not
benefit them, also it was wasting their time. | sent email invitations to more than 279 people. | also
announced the web survey in several software-engineering-forums websites in the Netherlands and
Indonesia. Until the deadline of the web survey, | just got nine teen responses. It provided insufficient
data, but at least | could utilize the data for my research.

Before | sent the email invitations to the prospective participants, | assumed that they were working in
the field of software development. As | was assuming, 58% of respondents claimed to be developers,
11% claimed to be IT manager and QA/tester, and 5% claimed to be project manager. Average of the
respondents, have 2-5 years of work experience (58%). The remaining was 21% of the respondents have
5-10 years of work experience. 16% of the respondents have 10-20 years of work experience. These
findings indicate that the respondents were deserved to be resources for this research since they have a
senior position in their organization. They have sufficient experience and knowledge in ICT field.

53% of the respondents reported that their organizations were working in (software) technology sector.
11% of the respondents were working in government. 5% of the respondents were working in the IT
consultant sector. In average, their organizations were small organizations. It can be assumed by looking
to how many people were employed in IT department within the organization. Smaller organization
must need fewer IT staff supports. 42% of the organizations have less than 11 IT staff within their IT
department. 21% of the organizations have 11-50 IT staff. The remaining (assumed as median-big
organization) has 51-100, 101-500, and 501-1000 IT staff support within their IT department (each
option has 10% of percentage).

27

The Success of Agile Software Development

Did you ever hear about agile Did you ever work with agile
software development? software development in your
projects?

Figure 8. Appreciation of agile software development

About 79% of the respondents reported that at least they ever heard about agile software development.
53% of the respondents reported that they never worked in any agile development projects. The
findings indicate that agile software development is quite popular as a software development approach.
Even though, the adoption of agile software development was not too good, not as the popularity. 44%
of the respondent said that lack of knowledge of agile software development including lack of
knowledge of agile concepts and benefits was the biggest constraint in the adoption of agile software
development in an organization. For people who do not know agile, it is impossible to propose agile
methods in their software development projects. In addition, let us say the people know agile, but they
do not know the concepts. These people will not take the risks to implement a method that is novel for
them. The second reason why people do not apply agile is organizational culture issues, 33% of the
respondents reported it. It cannot be denied that the decision-making is greatly influenced by
organizational culture, mainly by executives within the organization. The rest claimed that the
constraints of the adoption come from the customers who are not willing to involve too much in the
development process (11%), you cannot say an approach as agile software development without
customer involvement in the project. 11% of the respondents reported that agile did not fit for their
projects. Perhaps they thought the scale of the project is too big for agile. They thought agile only fits for
small projects.

Over the past few years, the respondents reported that they had applied agile few times in their
projects. This finding can be assumed that some of the respondents believed that agile worked for their
projects. They were confident with performance of agile software development. Therefore, they re-
applied it in other projects. 70% of the respondent reported that their organization had run 1-5 agile
projects. 20% of the respondents reported that their organization had run 6-10 projects. The rest (10%)
reported that their organization had run 11-20 projects. 60% of the organizations have been using agile

28

The Success of Agile Software Development

methods for 1-2 years. 30% of the organizations have been using it for less than one year. The rest (10%)
has been using it for 3-4 years.

Personal experience at agile software development
60.00%

50.00%

40.00%

30.00%

20.00%

10.00%
0.00%

0.00%
<1year 1-2 years 3-4 years 5-10 years > 10 years

Figure 9. Personal experience at agile software development

Agile software development methods

0% 0% W Scrum

M Extreme Programming
(XP)

= Dynamic Systems
Development Method
(DSDM)

M Rational Unified Process
(RUP)

Figure 10. Agile software development methods

Personally, the majority of the respondents have sufficient experience with agile software development.
In average, they have 1-2 years of experience with agile. It takes 50% of the respondents. More
experienced respondents have 3-4 years and 5-10 years of experience, each in percentage of 10%.
Additionally, 30% of the respondents have less than one year of experience with agile software
development. From the survey’s findings, the most popular agile method is Scrum. It takes 90%. The rest
(10%) is DSDM (Dynamic Systems Development Method).

29

The Success of Agile Software Development

The greatest benefit obtained from agile software development
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%
5.00%

0%
0.00%
Accelerate time Increase Better Availability to Enhance Decrease cost
to market productivity alignment IT- manage changes software quality
Business

Figure 11. The greatest benefit obtained from agile software development.

The respondents as experienced agile users reported actual benefits of agile adoption that were:
primarily better alignment IT-Business (33%), accelerate time to market (22%), increase productivity
(22%), availability to manage changes (11%), and decrease development costs (11%). A surprising result
showed that no one said that enhance software quality as the benefits of agile adoption. However, this
survey has insufficient respondents. Probably, in case more respondents | got, the survey would have a
different result.

The success rate of agile projects
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%
5.00%
0%
0.00%
>91% 71-90% 51-70% <51% Too early to
tell

Figure 12. The success rate of agile projects

In terms of the success of agile projects, 44% of the respondents reported that more than 71% of agile
projects were successful. 22% of the respondents reported that 51-70% of agile projects that they run
were successful. The rest (33%) reported it is too early to tell.

30

The Success of Agile Software Development

In terms of the team size that has been successful with agile projects, 56% of the respondents reported
that the largest team size they had been successful with agile projects was 6-10 people. “1-5 people”
option was chosen by 33% of the respondents. 11% of the respondents choose “11-20 people” option.
The findings did not meet my expectation. By this context question, | wanted to show that agile does not
only fit for small sized team. | wanted to give a proof that agile fits for large sized team. 1-10 people in a
team is the ideal number of people for an agile team. In case there were more respondents fill in the
guestionnaire, the result will be different.

Two questions addressed co-located agile teams. These two questions have been answered, 56% of the
respondents reported that they had ever been involved in co-located agile teams, the rest (44%) said no.
Co-location means that not everyone is on the same site during the development process. It can be
different location, building, city, or even country. From the 56%, 50% of it cannot say the success rate of
co-located agile teams. 33% of the 56% said that co-located agile team has 51-70% success rate. The rest
(17%) said that co-located agile team has more than 91% success rate. By this context question, |
wanted to prove that agile will works for co-located team as well as in the on-one-site team.

Agile adoption effects

90%
80%
70% /\
60%
A\
AN
30% \
0% // AT
/i \
0% / S h S h
Much higher orr:::r\:\;rat No change OE:IV; at Much lower
Productivity 11% 78% 0% 11% 0%
e Quality 0% 78% 22% 0% 0%
Development costd 0% 33% 44% 22% 0%
= Stakeholder satisfaction 38% 38% 25% 0% 0%

Figure 13. Agile adoption effects

In terms of the effects of agile adoption on performance of the team and resulting software, 78% of the
respondents who experienced as agile users stated that agile led to higher productivity. 11% of the
respondents reported that agile led to much higher productivity. The findings are in accordance with
some of the findings of the studies that have been discussed in the literature review that agile adoption
leads to higher productivity. Otherwise, 11% of the respondents said that agile adoption led to lower

31

The Success of Agile Software Development

productivity. The adoption of agile led to higher quality was reported by a 78% of respondents. These
findings are in accordance with the literature’s findings that have been discussed in the literature
review. 22% of the respondents said that there was no change on the quality of the producing software.
44% of the respondents reported that there was no change between before and after used agile. 33% of
the respondents realized that agile adoption led to a higher development cost, a 22% realized that agile
adoption have led to a lower development cost. 67% of the respondents who experience with agile
reported that their stakeholder was involved in their agile projects. These findings are in accordance to
the agile principles which the business people and the developers work together throughout the project.
The support of stakeholders and users is required to maintain a sustainable development. The
stakeholder involvement helps the developer to understand the business process, it eases the developer
to interpret the business needs and the business requirements into the functions of software that can
help improve the business process. 38% of respondents reported that their stakeholder felt more
satisfied after agile adoption, a 38% reported that the stakeholder much more satisfied, a 25% reported
that there was no effect on stakeholder satisfaction.

In open questions, some of the respondents gave their opinions about the three most important things
that make agile successful. In general, they reported: 1) members of the development team have to
know their roles and responsibilities in the team, 2) everybody has to know how to apply the method, 3)
close the gap between the customer and the developer by getting important stakeholders involved
during the development process. Regarding the three most important problems that encountered with
agile software-development methods, some of the respondents stated: 1) having the right stakeholders
available at the right time, 2) hard to estimate the time, 3) unbalanced team members in terms of
discipline and experience.

32

The Success of Agile Software Development

7. CONCLUSIONS & RECOMMENDATIONS

From the agile software-development discussion with the agile consultants, | got three important points:

Communication has an important role in the software development,

Software requirements are not easy to be identified completely at the beginning and volatile,
Co-operation & working together in the team (clients, users, and developers) determine the
fluency of software development.

These three points are less accommodated by the traditional approach in the software development
process. Since, traditional approach is designed to develop software in the rigid way. Everything must be
according to plan. Everything must be according to signed contract. There is no flexibility, there is no
tolerance, there are no changes after the contract has been signed. The customers will only get the
resulting products according to the contract or even less. However, the customer needs will always
change over the development time. The resulting products that cannot accommodate the needs of the
customer definitely impact to acceptances and satisfaction of the customers.

Superior of agile software development over traditional methods is flexibility and tolerance of agile to
changes, such as the changing requirements of software, the changing team, the changing technology,
etc. Agile software development accepts the changes towards the end of software development in order
to meet the customer’s desires and needs. Agile has principles to provide a product that actually can be
useful for the users and can help the business process of the clients. Agile also offers faster development
time with minimal defects, high acceptances and satisfaction of the customers. How is it obtained? It is
by Early coding, early testing, early customer feedback, and early bug fixing. These all activities are done
repeatedly. Different from traditional methods that only have customer feedback at the beginning stage
of development, and only have testing & bug fixing at the end stage of development.

In relation to the research questions, in the literature review, | have found twenty nine studies. They
provided evidence that agile software development led to lower development costs, better software
quality, higher productivity and customer satisfaction. According to S31, the chances for successful
adoption on agile methods were strongly related to a low masculinity index, and a low acceptance of the
power distance index in the national culture context. In the organizational culture context, the adoption
of agile was strongly related to human factor in the organization. From the findings of the interviews
and the web survey, | got evidence from the working field that agile methods were really used in the
software development projects, and it successfully worked. | have found the proofs that agile concepts
and processes can be understood well by the team and achieved success even in the first adoption.

33

The Success of Agile Software Development

Evaluation

Previously, my research project was titled “Agile Software Development and Business-IT Alignment." The
purpose and the objectives of this project were similar with my current project. The difference was | was
expected to make interviews with some business people as my research resources from the business
point of view. | had to dig up information relating to opinions of business people after they used or
implemented agile software development as a solution for their software development projects. The
business people here can be stakeholders, clients, or end users who are utilizing the resulting software
of agile software development. | had to gather information from them: what they know about the agile
concept, what they are thinking about the customer involvement concept, what they did during
software development, what they got and learnt from the agile software development process. It was
quite difficult to find business people who are willing to spend their time to be interviewed as research
resources. The same with finding literature that reviews topics related to customer satisfaction or agile
software development from the business point of view, it was rather difficult since almost all the
existing literature reviews agile software development from technical point of view. My project leader
was also considering this research was a difficult project to find enough resources in the short time.
Therefore, the subject of my research was changed to “The Success of Agile Software Development”. It
was changed in the middle of the project time.

At that time, | had finished the agile expert interviews and some part of the literature review. The
obtained data could still be used in the research results. However, since the project was changed and
due to the approaching deadline, | had to use a web survey as an obtaining-data method instead of
conducting other interviews. When | was using a web survey, | could obtain more data in the short time
than by using interviews. | have sent hundreds of email invitation to the prospective participants, and |
also have announced the web survey in some IT-forum websites in order to get as much respondents as
possible. However, due to the remaining time, | was just running the web survey in two weeks. It was
resulting in insufficient data that | obtained. But at least | had data to be processed as research results.
Perhaps, in case | would have had more time, | could get more respondents, more data, and different
results.

Subjective data such as the interview results and the answers of the last two web survey questions, it
was rather difficult to colligate all subjective opinions from the research resources and then represent it
in the report. In terms of conducting interviews, it was rather difficult as well since | have a lack of
language skills. Therefore, | had to prepare the interview questions that it might provide the needed
information. The questions of both the interviews and the web survey have been piloted by my
colleagues to know whether they would be understandable and answerable, and my project leader was
assessing whether it was proper or not. In addition, | used a voice recorder during the interview instead
of writing the minutes for the lack of language skills reason.

34

The Success of Agile Software Development

Bibliography
Agile Alliance. (2012). Retrieved March 2012, from Agile Alliance: http://www.agilealliance.org

Ambler, S. (2002). Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process.
New York: John Wiley & Sons, Inc.

Beijleveld, M. (2011, April 24). Cultural Dimensions and Agile Adoption. Retrieved March 19, 2012, from
ABC-thinkBIG: http://weblog.abc-thinkbig.com/#post100

Britten N., C. R. (2002). Using meta ethnography to synthesise qualitative research: a worked example.
Journal of Health Services Research and Policy, 209-215.

Buresh, D. L. (2008). Customer Satisfaction and Agile Methods. |EEE Reliability Society.
Cemuturi, M. (2011). Measuring Customer Satisfaction Using Internal Data. Ezine Articles.

Chris, M. a. (2005). A Case Study on the Impact of Scrum on Overtime and Customer Satisfaction. ADC
'05 Proceeding of the Agile Development Conference, (pp. 70-79).

Cockburn, A. (2002). Agile Software Development: The People Factor.

Corporate Report. (2003). Agile Methodologies Survey Results. Victoria, Australia: Shine Technologies
Pty Ltd.

CrossTalk. (2002). Agile Software Development. The Journal of defense Software Engineering.

Dan Turk, R. F. (2002). Limitations of Agile Software Process. Proceedings of the Conference on Extreme
Programming and Agile Processes in Software Engineering.

Dean Leffingwell, D. W. (2003). Managing Software Requirements: A Use Case Approach. Boston:
Pearson Education, Inc.

Diane E Strode, S. L. (2009). The Impact of Organizational Culture on Agile Method Use. Proceedings of
the 42nd Hawaii International Conference on System Sciences (pp. 1-9). Washington DC, USA:
IEEE Computer Society.

Diane E. Strode, S. L. (2009). The Impact of Organizational Culture on Agile Method Use. Proceedings of
the 42nd Hawaii International Conference on System Sciences (pp. 1-9). Washington DC, USA:
IEEE Computer Society.

Dingsoyr, T. D. (2007). Applying Systematic Reviews to Diverse Study Types: an Experience Report.
Madrid, Spain: IEEE Computer Society.

Dingsoyr, T. D. (2008). Empirical studies of agile software development: A systematic review. Journal
Information and Software Technology, Pages 833-859.

35

The Success of Agile Software Development

Ferreira C., C. J. (2008). Agile System development and Stakeholder Satisfaction: A South African
Empirical Study. Proceeding of the 2008 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on IT Research in Developing
Countries: Riding The Wave of Technology (pp. 48-55). Wilderness, South Africa: ACM.

Ferreira, C. a. (2008). Agile System development and Stakeholder Satisfaction: A South African Empirical
Study. Proceeding of the 2008 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists on IT Research in Developing Countries:
Riding The Wave of Technology (pp. 48-55). Wilderness, South Africa: ACM.

George W. Noblit, R. D. (1988). Meta-Ethnography: Synthesizing Qualitative Studies . London: Sage
Publications.

GH, H. (1984). Culture's Consequences: International Differences in Work-Related Values. Newburry Park,
CA: Sage Publications.

Highsmith, J. a. (2001). Agile Software Development: The Business of Innovation.

Hugh Beyer, K. H. (2004). An Agile User-Centered Method: Rapid Contextual Design. Extreme
Programming and Agile Methods XPAgile Universe 2004 (pp. 527-554). Springer.

Ibrahim, N. (2007). An Overview of Agile Software Development Methodology and Its Relevance to
Software Engineering. Jurnal Sistem Informasi Vol. 2 No. 1, 69-80.

llincic, R. (2008). Examining Agile Management Methods and Non-agile Management Methods in Global
Software Development Projects.

Jeffries, L. L. (2003). Extreme Programming and Agile Software Development Methodologies. CRC Press
LLC.

Kai Petersen, c. W. (2009). A Comparison of Issues and Advantages in Agile and Incremental
Development. The Journal of Systems and Software, 1479-1490.

Kai Petersen, C. W. (2009). A Comparison of Issues and Advantages in Agile and Incremental
Development. The Journal of Systems and Software, 1479-1490.

Khurana, H. (2011). Implementation of New Management Agile Technique for Reducing Overtime and
Increasing Customer Satisfaction. International Journal of Engineering Science and Technology,
238-241.

Kniberg, H. (2007). Scrum and XP from the Trenches. Stockholm: Crisp.
McCauley, R. (2001). Agile Development Methods Poised to Upset Status Quo. SIGCSE Bulletin.
McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Microsoft press.

McCracken D. D., M. A. (1982). Lifecycle Concept Considered Harmful.

36

The Success of Agile Software Development

McCracken, D. D. (1982). Lifecycle Concept Considered Harmful.

Melonfire. (2006, September 22). Understanding the pros and cons of the Waterfall Model of software
development. Retrieved March 26, 2012, from TechRepublic:
http://www.techrepublic.com/article/understanding-the-pros-and-cons-of-the-waterfall-model-
of-software-development/6118423

Miller D., L. J. (2001). The people make the process: commitment to employees, decision making, and
performance. Journal of Management.

Miller, D. a. (2001). The people make the process: commitment to employees, decision making, and
performance. Journal of Management.

Ming Huo, J. V. (2004). Software Quality and Agile Methods. the 28th Annual International Computer
Software and Applications Conference. IEEE.

Pekka Abrahamsson, O. S. (2002). Agile Software Development Methods: Review and Analysis. VTT
Electronics.

Pressman, R. (1997). Software Engineering: A Practitioner’s Approach, 4th Edition. McGraw-Hill.

Quinn R. E., J. R. (1983). A Spatial Model of Effectiveness Criteria: Towards a Competing Values Approach
to Organizational Analysis. Management Science, 363-377.

Quinn, R. E. (1983). A Spatial Model of Effectiveness Criteria: Towards a Competing Values Approach to
Organizational Analysis. Management Science, 363-377.

Rashina Hoda, J. N. (2009). Don't Mention the 'A' Word: Agile Undercover.

Rashina Hoda, J. N. (2011). Supporting Self-Organizing Agile Teams: What’s Senior Management Got To
Do With It? Wellington, New Zealand.

Rashina Hoda, J. N. (2011). Supporting Self-Organizing Agile Teams: What’s Senior Management Got To
Do With It? Wellington, New Zealand.

Reich, B. H. (2000). Factors that influence the social dimension of alignment between business and
information technology objectives. MIS Quarterly, Vol.24, No.1.

Reich, B. H. (2000). Factors that influence the social dimension of alignment between business and
information technology objectives. MIS Quarterly, Vol.24, No.1.

Shaw C., I. J. (2002). Building great customer experiences. New York: Palgrave Macmillan.

Shaw, C. a. (2002). Building great customer experiences. New York: Palgrave Macmillan.

37

The Success of Agile Software Development

Taylor P.S., G. D. (2006). Do Agile GSD Experience Reports Help the Practitioner? International
Conference on Software Engineering, Proceedings of the 2006 international workshop on Global
software development from the practitioner (pp. 87 —93). ACM.

Taylor, P. G. (2006). Do Agile GSD Experience Reports Help the Practitioner? International Conference on
Software Engineering, Proceedings of the 2006 international workshop on Global software
development from the practitioner (pp. 87 — 93). ACM.

Tore Dyba, T. D. (2007). Applying Systematic Reviews to Diverse Study Types: an Experience Report.
Madrid, Spain: IEEE Computer Society.

Tore Dyba, T. D. (2008). Empirical studies of agile software development: A systematic review. Journal
Information and Software Technology, Pages 833-859.

Vavra, T. G. (2002). Customer satisfaction measurement simplified: a step-by-step guide for ISO
9001:2000 certification. American Society for Quality.

VersionOne. (2007). State of Agile Development. VersionOne.
http://www.versionone.com/state_of agile_development_survey/

VersionOne. (2008). State of Agile Development. VersionOne.
http://www.versionone.com/state_of agile_development_survey/

VersionOne. (2009). State of Agile Development. VersionOne.
http://www.versionone.com/state_of agile_development_survey/

VersionOne. (2010). State of Agile Development. VersionOne.
http://www.versionone.com/state_of agile_development_survey/

VersionOne. (2011). State of Agile Development. VersionOne.
http://www.versionone.com/state_of agile_development_survey/

Wikipedia. (2012, February 28). Agile Software Development. Retrieved February 2012, from Wikipedia:
http://en.wikipedia.org/wiki/Agile_software_development

Zwicker, M. (2007). War Stories - Fighter Jets and Agile Development at Lockheed Martin. Agile Journal A
Techwell Community.

38

The Success of Agile Software Development

Appendix A: Literature Summary
This part provides the summary of each study that was used in the literature study.

51 | Agile Methodologies Survey Results
Author [Shine Technologies Pty Ltd

Year | 2003

Type [Survey

In 2003, Shine technologies run a web-based survey to measure the interest in agile methods. They
received 131 responses, from different organizations ranging from an online computer library center to
NASA. The results showed that agile has reduced cost (49%), better or significantly better productivity
(93%), better or significantly better quality (88%) and better or significantly better business satisfaction
(83%) (Corporate Report 2003).

52 State of Agile Development

Author | VersionOne Inc.

Year 2007, 2008, 2009, 2010, 2011,

Type Survey
Year 2007 2008 2009 2010 2011 %
Participants 1681 2318 2570 4770 6042 -
Respondents adopted Agile 73% - 84% 90% 80% -
Increased Quality 77% 68% 63% 65% 638% 68%
Accelerated Time to Market 83% 83% 63% 0% 71% 74%
Reduce Cost 66% 65% 75% 39% 49% 59%

Improved Alignment between IT & Business Objectives 73% 66% 65% 68% 68% 68%

Four obtained benefits were picked, those aspects highly directly impact to customer satisfaction,
increased quality, accelerated time to market, reduce cost, and improved alignment between IT &
Business objectives. In average, 68% respondents found that the product quality after implemented
agile in the project is better than used other methods. 74% respondents stated that implemented agile
accelerates time to market. 59% respondents found they paid less cost than used other methods. 68%
respondents said that implemented agile improves alignment between IT & Business objectives.

39

The Success of Agile Software Development

53 | Agile System development and Stakeholder Satisfaction: A South African Empirical
Study

Author | Carlos Ferreira and Jason Cohen

Year 2008

Source SAICSIT '08 Proceedings of the 2008 annual research conference of the South African

Institute of Computer Scientists and Information Technologists on IT research in
developing countries: riding the wave of technology, Pages 48-55
Type Proceeding
In this study, the authors examined a research model regarding five characteristics of agile method's
effects (iteration, test-driven design, feedback, continuous integration, and collective ownership) on:
1. Stakeholder satisfaction with the development process
2. Stakeholder satisfaction with the development outcome
They focused on the Scrum approach as the agile methods practice.

They found that all characteristics of agile methods lead to higher customer satisfaction. The results
showed that the customer is more satisfied with the development process, also with the overall project
outcome. More often customer feedback within development process, the customer helped the
developer team to recognize necessary requirement's changes by allowing the customer to voice their
desired changes. The customer was fully satisfied because they get what they wanted.

54 Implementation of New Management Agile Technique for Reducing Overtime and
Increasing Customer Satisfaction

Author Harsimarjeet Khurana

Year 2011

Source International Journal of Engineering Science and Technology, Pages 238-241

Type | Journal

The author developed a new agile management technique. It's named PEOR model (Performance
Evaluation and Overtime Reduction). This technique is a development of Scrum, it will efficiently work
on a small team. It has been developed for managing the work in the proper and systematic manner to
avoid overtime, to monitor the performance of the employees regularly and the most important is cost.

The qualitative data is obtained from customer opinion discussion. The overall feedback from the
customer was positive after the introduction of PEOR. The customers said that they would recommend
using PEOR in the future. The customer was involved to see the development process. The customers
appreciated the concept of twice daily meeting because everyone knows what is required from them,
and the concept of twice daily meeting has led to less misdirected development and clearer
understanding of both the requirement and the development process by both the customers and the
developer team. The customers were very satisfied. The twice-daily meeting has helped the customers
and development team to visualize the product on the daily basis rather than at the end of the product.

40

The Success of Agile Software Development

55 | A Case Study on the Impact of Scrum on Overtime and Customer Satisfaction
Author | Chris Mann and Frank Maurer

Year 2005

Source ADC '05 Proceedings of the Agile Development Conference, Pages 70 - 79
Type Proceeding

The authors conducted a study examines effects of Scrum implementation in the Software Company
Petrosleuth. The case study examined overtime and customer satisfaction. They carefully examined the
involvement of people, breaking down people’s education levels, experience levels, and experience with
agile methods.

The customers were happier with the produced software after the introduction of Scrum. They said it
provided better consistency, transparency, and coordination. The customer mentioned feels more
involved especially with the daily scrum meetings helping to keep them up to date. The only complaints
were that the Scrum process is too rigid, and sometimes it is confusing to understand what the
developers are working on.

S6 War Stories - Fighter Jets and Agile Development at Lockheed Martin
Author Mark Zwicker

Year 2007

Source Retrieved March 20, 2012, from Agile Journal;

http://www.agilejournal.com/articles/columns/case-studies/313-case-study-war-
stories-fighter-jets-and-agile-development-at-lockheed-martin

Type Web site

In this literature, the author reports the details Lockheed Martin's experience adopting Scrum with
more than 200 co-located people, which means in distributed locations. This paper revealed the
greatest motivation for switching from their waterfall design to Scrum was a lack of customer
satisfaction. Lockheed expected by adopting scrum the customer satisfaction would increase, higher
than the old waterfall model. The important first step to introduce a team to Scrum is ensure everyone
has information and knowledge how the Scrum process works and how to deal with any managerial and
cultural impediments.

Working in a co-located environment is fundamentally more difficult and requires the right tools to keep
in touch. Therefore, Lockheed had decided on Agile Enterprise, it allowed all project team members, as
well as the shareholders, to access the status information of the project from a web browser. From the
result of polling, this report claims a 10% increase in Productivity, Product quality, and Customer
satisfaction.

41

The Success of Agile Software Development

57 | Customer Satisfaction and Agile Methods
Author Donald L. Buresh

Year 2008

Source Publisher: VDM Verlag Dr. Mueller e.K.
Type Book

The author examined whether the use and result of agile methods as effective as the use and result of
plan-driven methods in terms of customer satisfaction. Buresh employed some variables in order to
examine it. The following variables are: project management effectiveness, project team effectiveness,
and product guality.

Obtained data does not support the claim that the use and results of agile methods provide higher
customer satisfaction than the use and results of plan-driven methods. He argues that both methods
satisfy their respective customers under a wide range of different situations, it is the responsibility of
the signers of the Agile Manifesto and the agile community to verify the propositions of the manifesto
regarding customer satisfaction by using statistical analysis instead of case studies.

S8 | The costs and benefits of pair programming
 Author | Alistair Cockburn and Laurie Williams -
Year 2001
Source | Book, Extreme programming examined, Pages 223 - 243
Type Book section

In this paper, the authors examined the effectiveness of pair programming. They have investigated eight
paths of software engineering and organizational effectiveness: Economics, satisfaction, design quality,
problem solving, team building and communication, and staff and project management.

The authors revealed that pair the powerful point of pair programming is combining pair relaying and
brainstorming. It enables faster problem solving, and by ongoing pair relaying and brainstorming
resulting in better design and shorter code length. Continuous review by two programmers work
collaboratively on the same programming tasks, they caught many mistakes and defects as they were
coding than in QA test, and the end result has statistically lower defects. Significantly, the people who
work in pair programming learn more about the system and software development. Since the
knowledge is being passed between programmers, constantly, from tool usage tips to overall
programming skills. The people also learn to work and talk together more often, giving better team
dynamics and information flow.

S9 | The collaborative software process
Author Laurie Williams and Robert R. Kessler
Year 2000

Source Doctoral Dissertation, Utah University
Type Paper

The authors run an experiment examined PSP (Personal Software Process) and CSP (Collaborative
Software Process) effects on the productivity, cycle time, and quality. They found that two programmers
that work collaboratively produce high quality product faster than individual programmer. Additionally,
they revealed that programmers more enjoy the software development process using CSP. Since the
collaboratively programmers always have assist if they are confused by unknowing something. And the
collaborative work of side-by-side programmers enables effective and efficient defects detection and
defects removal, allows them to spend more time doing design and less time doing debugging.

42

The Success of Agile Software Development

510 Agile Customer Engagement: a Longitudinal Qualitative Case Study

Author Geir Kjetil Hanssen and Tor Erlend Faegri

Year 2006

Source ISESE '06 Proceedings of the 2006 ACM/IEEE international symposium on Empirical
software engineering, Pages 164 - 173

Type Proceeding

In this longitudinal case study, the authors have followed a small software product company that has
turned from a waterfall-like process to evolutionary project management (Evo). The case company is
CompNN. It is a medium-sized Norwegian software company that provides a packaged software product
for marketing and customer surveys called ProdNN.

Their analysis identifies a number of prerequisites for succeeding with this approach. Proactive
stakeholder management is the foundation. Their analysis shows that CompNN has achieved a number
of benefits as a result of Evo and the introduction of the PMT. First, close customer cooperation has a
highly motivating effect on the developers. Second, developer’s confidence has increased as a result of
continuous settlement of expectations in that stakeholders assist in the prioritization of goals. The direct
cooperation with users is a positive experience for the developers as it increases the quality of the
communication and leads to improved understanding of the real business problems. Third, Evo has
increased the visibility of the process internally in the organization and externally among the
~stakeholders.

S11 | Software Quality Assurance in XP and Spiral - A Comparative Study

Author Sajid Ibrahim Hashmi and Jongmoon Baik

Year 2007

Source ICCSA '07 Proceedings of the The 2007 International Conference Computational
Science and its Applications, Pages 367-374

Type Proceeding

Quality Assurance is important to the quality of the software product regardless of the development
process we choose. In this comparative study, the authors compared Quality Assurance techniques
between Extreme Programming and Spiral Model that was developed based on waterfall model. The
findings of the case projects indicate that code was produced by XP had less fault rate in comparison
with the second method.

XP has closer link with VBSE (Value Based Software Engineering), and key elements of VBSE are
addressed by XP. BRA (Benefit Realization Analysis) is performed prior to starting iteration in the form of
informal meetings where pros and cons of the project are discussed. These kinds of meetings are also
helpful to identify the non-software initiatives which may cause the realization of potential project
benefits along with elicitation and reconciliation of stakeholders’ value based conditions. The next
element of VBSE deals with risk analysis and management that pervade the entire system life cycle. The
productionizing stage of XP recommends slowing down the development so that risks can be identified
and mitigated. Earned value management in VBSE tracks whether project is meeting its original plan. In
XP, it is ensured in number of ways. Above all, acceptance tests that were performed by on-site
customer ensure that project never deviates from its proposed functionality, value measures are
considered properly while product is being developed. XP has also got a capability to change as an
opportunity, taking effect both from inside and outside. Changing requirements from customer can be
the result of change in market trends, or introduction of new technology. Whereas XP itself is flexible
enough to let its users use its core practices according to their requirements.

43

The Success of Agile Software Development

512 Software Quality and Agile Methods

Author | Ming Huo, June Verner, Liming Zhu, and Muhammad Ali Babar

Year | 2004

Source COMPSAC '04 Proceedings of the 28th Annual International Computer Software and
| Applications Conference - Volume 01, Pages 520-525

Type Proceeding

In this comparative study, the authors have analyzed agile practice’s quality assurance abilities and their
frequency compared to waterfall model quality assurance abilities.

In the agile way, there is a general practice which called On-site customer. The customer helps
developers refine and correct the requirements. The customer supports the developer team throughout
the development process. In the waterfall model, customers typically involved just in requirement
definition, possibly system, and design. They are not involved and do not contribute as much as in agile
development.

Acceptance testing is a dynamic quality assurance practice. It's carried out after all unit tests have
passed. In agile methods, this practice occurs much earlier and more frequently than the waterfall
model. Earlier acceptance testing, earlier customer feedback. The small release enables the developer
team to get customer feedback as early as possible, which provides valuable information for
development process.

Continuous integration means the developer team does not integrate the code once or twice. The main
purpose is to catch enough bugs to be worth the cost. Continuous integration reduces the time to
search bugs and enables detection of error early. The agile development integration is done much
earlier, and its frequency is much higher than the waterfall model.

Pair programming, also known as continuous code inspection means two programmers work on the
same code, continuously. It improves design quality and reduces defects by continual design and code
review process.

44

The Success of Agile Software Development

513 '_P_roject Management in Plan-Based and Agile Companies

Author Martina Ceschi, Alberto Sillitti, and Giancarlo Succi

Year 2005

Source Journal IEEE Software archive, Volume 22 Issue 3, May 2005, Pages 21 - 27
Type lournal

The authors had conducted an empirical study to investigate whether agile methods change and
improve project management practices in software companies. They analyzed that the main problem in
software development is delivering products with all the features on time. Approximately 50 percent of
the plan-based companies and a 10 % of agile companies believe they have a difficult relationship with
their customers. However, agile companies’ customer relationships are not so difficult to manage. In
fact, one of the main problems that was solved by adopting agile methods is the customer relationship.

Both agile and plan-based companies have collaborative customer relationships. A 60% of the agile
companies have their customers on-site. A 40% of plan-based firms use this practice as well. Normally, it
is difficult to keep the contract fixed over project. Agile companies tend to deal with their costumer in
flexible contract instead of the fixed ones. Constant customer involvement allows quick response to
changes by the development team. The higher customer involvement increases quality link between the
customer and the development team. Therefore, agile companies are more satisfied with their
customer relationships than plan-based companies. Plan-based companies with traditional development
process difficult to respond quickly to changes. Every changes and modifications risk the project plan
and the process of organization.

514 Exploring Extreme Programming in Context: An Industrial Case Study
Author Lucas Layman, Laurie Williams, and Lynn Cunningham

Year 2004

Source ADC '04 Proceedings of the Agile Development Conference, Pages 32 - 41
Type Proceeding

This paper describes a longitudinal case study that analyzed the effects of using XP for constructing
commercial software at Sabre Airline Solutions. This study compares two releases of the same product.
One release accomplished using a traditional waterfall model, and the other, after running 2 years, using
extreme programming methodologies. All team members reported that communication among the
team increased when using extreme programming, which allowed problems to be solved more quickly,
and all developers benefited from increased customer feedback.

In comparisons of the new release to the old release show that programmer productivity increased by
50%, pre-release quality improved by 65%, and post-release quality improved by 35%. In fact, the
defects causing the unusable system were reduced to 0% using XP from 12% using the waterfall model.
From these findings proof that, over time, implementing the extreme programming results in increased
productivity of developers and improved quality of code.

45

The Success of Agile Software Development

515 A Formal Experiment Comparing Extreme Programming with Traditional Software
Construction

Author Francisco Macias, Mike Holcombe, and Marian Gheorghe

Year 2003

Source ENC '03 Proceedings of the 4th Mexican International Conference on Computer
Science, Page 73

Type | Proceeding

The author was running an experiment conducted on computer science student that was aimed to
assess XP and compare it with a traditional approach. In terms of quality and size, extreme
programming teams produced similar quality and size of the end products to traditional-approach
teams.

According to the activities and the time spent, extreme programming teams spent more time in testing,
and spent less time in programming. In the extreme programming approach, teams working spent much
less time in analysis and design. Oppositely, traditional-approach teams spent less time in testing, and
spent more time in programming. Traditional-approach teams spent much more time in analysis and
design. And, extreme programming is a process requiring low technology, it means that less expensive
than traditional approaches that require expensive and more sophisticated technology.

The final results showed that the use of XP in a software construction process produced as good results
as obtained from the use of traditional approach, in both external and internal guality. The authors
were surprised that, even though extreme programming is a much newer concept than the traditional
approach, it can provide as good result as traditional approach, and given that XP procedure absence of
Design phase provides as good results as traditional approach that including Design phase.

516 2007 IT Project Success Rate Survey
Author | Dr. Dobb’s Journal (DDJ)

Year 2007

Type Survey

In 2007, IT Project Success Rate Survey was run to measure the success rate in the use of agile methods.
The survey received 586 responses, from different organizations ranging. The results showed that the
respondents reported that agile software development project have a 71.5% success rate, offshored
software development projects a 42.7% success rate, and traditional projects a 62.8% success rate.
61.3% of respondents believed that delivering when the system is ready to be shipped is more
important than delivering on schedule. 79.6% of respondents believe that providing the best ROl is
more important than delivering under budget. 87.3% of respondents believe that meeting actual needs
of stakeholders is more important than building the system to specification. 87.3% of respondents
believe that delivering high quality is more important than delivering on time and on budget. 75.8% of
respondents believe that having a healthy workplace is more important than delivering on time and on
budget.

46

The Success of Agile Software Development

517 2010 IT Project Success Rates survey
Author | Dr. Dobb’s Journal (DDJ)

Year | 2010

Type Survey

In 2010, Dr. Dobb's Journal conducted an IT Project Success Rate Survey to measure the success rate in
the use of agile methods with 203 respondents. According to the results, Agile and Iterative project
teams have statistically identical success rates around 60%, ad-hoc project teams (no defined process)
and traditional project teams have lower success rates than agile/iterative project teams, each has
around 44% and 43%. 54% of respondents prefer to deliver on time according to the schedule and 44%
prefer to deliver when the system is ready to be shipped. 35% of respondents prefer to deliver within
budget and 60% prefer to provide good return on investment (ROI). 14% of respondents prefer to build
the system to specification and 85% prefer to meet the actual needs of stakeholders. 40% of
respondents prefer to deliver on time and on budget and 57% prefer to deliver high-quality, easy-to-
maintain systems

518 | Using Extreme Programming in a Maintenance Environment

Author | Charles Poole and Jan Willem Huisman

Year | 2001

Source | Journal IEEE Software archive, Volume 18 Issue 6, November 2001, Pages 42 - 50
Type | Journal

In this study, the author observed the effects of transition from poor and individualized programming
approach, to extreme programming practice in the lona Technologies. By the end of 1997, lona
Technologies had developed system code (called Orbix) that already patched and re-patched hundreds
of times. This practice resulting in increased code entropy and decreased program understandability,
lona Technologies had lack in proper documentation process, and documentation visibility was scarce in
their old methodology. Each software engineer had no focus on process improvement, and engineers
reported not feeling cohesive in their software teams.

The authors concluded that after introducing extreme programming practice, there were fewer issues in
new release, code entropy was significantly reduced, code complexity was decreased, and there were
no patch rejections during the last months of this study. The findings suggest that adopting XP approach
improved the developer team’s productivity and ability to deliver quality support. The productivity was
improved by 67% over the old employed practice. Furthermore, improvement continued, the team size
was reduced from 36 to 25 developers. One of the greatest benefits to the team is visibility
improvement.

47

The Success of Agile Software Development

519 When does a pair outperform two individuals?

Author Kim Man Lui and Keith C. C. Chan

Year 2003

Source XP'03 Proceedings of the 4th international conference on Extreme programming and
agile processes in software engineering, Pages 225-233

Type Proceeding

The authors performed experiments with experienced software developers. They reports experimental
measurements of quality and productivity when using pair programming. In this experimental study,
paired-programmer and solo-programmer group were requested to complete algorithm-style aptitude
tests in order to observe the capability of solving algorithms in pairs and in solo.

The results establish a statement that a pair outperforms individuals in working on computer algorithms
in terms of quality and productivity. They concluded that pair programming achieves higher productivity
when a pair writes a more challenging program that demands more time spent on design. The finding
explains that it is effective to write a program in pair for rapid changing requirements because it
demands that programmers concentrate on changing (or continucus) design.

520 Staying Agile in Government Software Projects

Author ' Barg Upender

Year | 2005

Source ADC '05 Proceedings of the Agile Development Conference, Pages 153 - 159
Type | Proceeding

This project has 3 phase project involving the development of a centralized database and web
application for the National Institute of Health that would house clinical research studies on human
subjects in order to find better ways to detect, diagnose, treat and prevent a variety of diseases. Since
the studies involve humans, the highest ethical and safety standards must be followed. The project had
also had several failed attempts in the past due to the inherent challenges of unifying the requirements
and the organization. The traditional waterfall-based contracting model was not able to address the
technical and organizational challenges.

Overall, the Scrum practice helped the team to become more efficient in delivering the software. Some
of the processes were difficult to adapt to the certain project, but agile practices have unquestionably
helped the team, the project managers, and the end user. The team also reported better
communication, more time writing software and visibility into progress that allowed them more
freedom to make decisions. The users were pleased with the quick turn-around and better control over
the direction of the system.

48

The Success of Agile Software Development

521 | A Comparison of Issues and Advantages in Agile and Incremental Development
between State of the Art and an Industrial Case

Author Kai Petersen and Claes Wohlina

Year 2009

Source Journal of Systems and Software archive, Volume 82 Issue 9, September, 2009, Pages
1479-1490

Type | Journal

In this literature, the authors compared the state of the art investigating issues and advantages when
using agile and incremental development models with an industrial case study where agile as well as
incremental practices are applied. The articles considered in the state of the art are based on empirical
studies. Regarding the research guestions and contributions they concluded that adopting agile and
incremental practices in large-scale software development leads to benefits in one part of the process,
while raising issues in another part of the process.

In summary, the main advantages that have been revealed by this literature from the case study are:
the requirements are more easier to estimate since the scope could be reduced, the need of
documentation was reduced since employed direct communication in teams, testing resources are used
more efficiently, frequent deliveries allow early feedback, rework reduction, higher transparency and
visibility, low requirements volatility, and reduction of waste requirements.

522 The Effect of Moving from a Plan-Driven to an Incremental Software Development
Approach with Agile Practices

Author Kai Petersen and Claes Wohlin

Year 2010

Source Empirical Software Engineering archive, Volume 15 Issue 6, Pages 654-693

Type | Journal

This paper aimed to investigate the perception of the bottlenecks, rework changes, and avoidable work,
when migrating from a plan-driven software development to agile practice.

The qualitative data showed that constructing the product in incremental approach using LSV concept
allows higher release frequency. Ericsson was able to deliver the functionality more frequently than
using plan-driven approach, which would benefit the organization, since frequent releases lead to
earlier return on investments (ROI). In plan-driven approach, a large up-front investment is required
which starts paying off when the overall development has been completed. The gualitative data showed
that there is a clear improvement in the waste reduction after introducing agile practice. And, the
requirements were better descripted when using agile practice than plan-driven, indicated by the
number of change requests have been reduced. The quantitative data showed improvement in early
testing done before system testing (LSV), reflected in a reduced fault-slip-through in comparison to the
plan-driven approach. Furthermore, the constantly rising maintenance effort decreased after
introducing incremental and agile practice. The amount of documentation can be reduced because
much of the documentation was related to hand-overs between phases, direct communication can
replace parts of the documentation. Furthermore, in plan-driven development the knowledge of people
is very specialized and they have a lack of confidence. This can be hindering in the beginning when
moving from plan-driven to incremental and agile practices as having small teams requires very broad
knowledge of the team members. However, at the same time face-to-face interaction helps team
members to learn from each other and gain insight and understanding of the overall development
process.

49

The Success of Agile Software Development

523 | Experimenting with Industry’s “Pair Programming” Model in the Computer Science
Classroom

Author Laurie A. Williams and Robert R. Kessler

Year 2001

Source Journal of Computer Science Education, Pages 1-20

Type | Journal

The authors were running experiment in the Summer and Fall semesters at the University of Utah. The
Summer class used pair programming in the Collaborative Development of Active Server Pages, whereas
the Fall class used pair programming in a senior software engineering course.

All findings suggest that the paired-programming students almost delivered their products on time. And,
the paired-programming students performed much more consistently and resulting higher quality. 95%
of the class felt more confident in their assignments because they pair programmed. On average,
students that worked in pairs passed 15% more of the tutor's test cases. The guality difference between
paired-programming and individual-programming was statistically significant. The students felt they
were more productive when working collaboratively. Students were happier and less frustrated, and
were more confident in their work. A 92% of the students said they felt more confident in their projects
when working in pairs, 96% of the students said they felt more enjoyed the work when working in pairs.
On an anonymous survey, 84% of the class felt enjoyed doing the assignments more when working with
partner.

524 | How and Why Collaborative Software Development Impacts the Software
| Engineering Course
Author Lucas Layman, Laurie Williams, Jason Osborne, Sarah Berenson, Kelli Slaten, and
Mladen Vouk
Year 2005
Source Proceedings Frontiers in Education 35th Annual Conference, Pages TAC9-T4C14
Type | Proceeding

In order to observed the impacts of collaborative software development to the software engineering
course, the authors gave paired programming assignments during software engineering classes during
Spring and Fall 2004 at North Carolina State University.

The findings suggest that there exist positive correlation between saving time in paired-programming
and a tendency to procrastinate when students work individually. The students believed that they were
more organized when working in pairs, and it was resulting in higher productivity. The students saw pair
programming as beneficial in uncovering logic errors than in uncovering coding errors. This statement
suggests that even the most confident students, who do not benefit from pair programming to find code
errors, can still benefit by explaining their thoughts to a partner to uncover errors in their logic. Results
suggest that the most confident students, perhaps the best programmers, felt that they could be held
back by less suitable partners. Conversely, paired-programming seems to benefit students with lower
programming self-confidence.

50

The Success of Agile Software Development

525 | The Impact of Pair Programming on Student Performance, Perception and
Persistence

Author | Charlie McDowell, Linda Werner, Heather E, Bullock, and Julian Fernald

Year 2003

Source ICSE '03 Proceedings of the 25th International Conference on Software Engineering,
Pages 602 - 607

Type | Proceeding

During 2000-2001 academic years, the authors were running an experimental study. The authors held
four sections of the course were offered during the year: one in the Fall quarter, two in Winter, and one
during the Spring. Students enrolled in the Fall and Winter sections were required to complete all
assignments using pair programming, whereas students in the Spring section were required to complete
programming assignments independently.

All findings suggest that paired students were significantly more likely to complete the course than were
non-paired students, and therefore more likely to pass the course as well. Students who paired reported
significantly higher confidence in their program solutions than students who worked individually. Paired
students reported greater satisfaction than non-paired students. Paired students more enjoyed working
on programming assignments more than non-pairing students.

526 Primavera gets agile: a successful transition to agile development

Author Bob Schatz and lbrahim Abdelshall

Year 2005

Source Journal IEEE Software archive, Volume 22 Issue 3, May 2005, Pages 36 - 42
Type Journal

This is an experience report of Primavera. It has developed using the waterfall model in the past and has
ended up working late nights and weekends to finish projects on time, then, it has decided to try using
Scrum. With the new Scrum process the teams began working 40 hour work weeks in 30 day sprints.

This article has revealed Primavera’s success using Scrum, resulting in decreased reported defects and
faster time-to-market. The article also points out the benefits to the team members that no longer have
to work at an unreasonable pace and not having any turnover for 10 months. Even with the many
successes implementing Scrum there were still problems along the way. One problem was too much
attention being put on adding features each sprint rather than making sure there were no bugs in
existing features. Another problem was with the requirements of the project constantly changing each
sprint it is difficult for the stakeholders to know how much work is left to be done before release time.
This study does a good job pointing out several possible pitfalls from adopting Scrum as well as showing
the benefits in a guantifiable manner,

51

The Success of Agile Software Development

527 | Establishing the Agile PMO: Managing variability across Projects and Portfolios
Author Ash Tengshe and Scott Noble

Year | 2007

Source AGILE '07 Proceedings of the AGILE 2007, Pages 188-193

Type | Proceeding

This article is about experience report of Capital One Auto Finance switching from a traditional waterfall
model to agile approach. Capital One Auto Finance's IT division had an increasing problem of delivering
business value on time along with growing customer dissatisfaction, so the time was right to have some
positive changes. These positive changes included the exploration and implementation of an agile
development process using Scrum.

This article goes in depth how the top-down switch to Agile from waterfall was successfully completed.
One of the main goals of becoming Agile was to improve time-to-market and customer satisfaction.
After 40+ Agile Projects were completed they found that the time-to-market was 50% faster and the
customer satisfaction on all of the 40+ projects was 100%. These outstanding results validated their
initial belief that customer collaboration was the key and agility with Scrum creates positive results.

528 Ongoing quality improvement, or: how we all learned to trust XP

Author | Mark Striebeck

Year | 2005

Source ADC '05 Proceedings of the Agile Development Conference, Pages 267 - 271
Type | Proceeding

This paper is about experience VA Software adopted extreme programming. VA Software realized that
the traditional waterfall model would not work for its project. The product managers were continuously
making changes about which features to include or upgrade from the legacy product, and the team
needed a more agile process to react to the changing requirements. Two project managers researched
extreme programming and decided to apply it to the product.

One point of note is that this paper suggests that the team adopted an iterative-test-last process instead
of test-driven development as mandated by extreme programming, tests suites were created and run
continuously, both on a CruiseControl server and a Tinderbox server. The team saw development time
decrease, while code quality increased. The last reported release of the product came in under budget
by three calendar days. Quality was measured in number of bugs found per release; since switching to
extreme programming practices, the product has experienced an 80% reduction in the number of bugs
per man-weeks of product development,

52

The Success of Agile Software Development

529 | Experiences with Extreme Programming in Telehealth: Developing and Implementing
| a Biosecurity Health Care Application

Author | Ann Fruhling, Kimberly Tyser, and Gert-Jan de Vreede

Year 2005

Source HICSS '05 Proceedings of the Proceedings of the 38th Annual Hawaii International

Conference on System Sciences (HICSS'05) - Track 6 - Volume 06, Page 151.2
Type Proceeding
This is an experience report with Extreme Programming in Telehealth. It describes the effects of
adopting extreme programming for a project called STATPack.

Overall, the study concludes that extreme programming is an effective methodology to develop health
care applications. The rapid prototyping enabled IT developers and health care users to clarify system
requirements, communicate openly, and quickly build rapport. Further, the research found that where
the technology was new or foreign, extreme programming was flexible enough to support several
iterations of technology and produce prototypes in a timely manner. Extreme programming seems to
lower management overhead according to the study, heightens team productivity, and better satisfies
customers while building trust between those customers and the developers.

530 | An Empirical Study of the Evolution of an Agile-developed Software System

Author A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. C. Sharp, and N. Smith

Year | 2007

Source ICSE '07 Proceedings of the 29th international conference on Software Engineering,
Pages 511-518

Type | Proceeding

This study presents the first measurement-based study of the evolution of software developed using an
agile approach in an industrial setting.

Smooth growth was seen in the evolution of this agile system. Growth rate measured in lines of code
was higher than growth rate measured in files or directories. The final product’s quality was enhanced
using extreme programming methodologies. The clients were impressed with the agile approach
because of the responsiveness of the team to their needs. The team managed to produce better quality
software for the customer. Refactoring in order to maintain code simplicity directly resulted in higher
quality code, and having an on-site customer allowed programmers to build a system that was
constantly evolving toward the customer’s idea of the final system, removing the possibilities of
producing waste code that implemented a misunderstood requirement. The product in this paper was
also a success commercially in that it survived well in the market for 6 years, continuing to use extreme
programming for the entire time.

53

The Success of Agile Software Development

S31 Cultural Dimensions and Agile Adoption

Author Mary Beijleveld

Year 2011

Source Retrieved March 19, 2012, from ABC-thinkBIG: http://weblog.abc-
thinkbig.com/#post100

Type Web

The author conducted comparison study between Geert Hofstede’s comprehensive study on how values
in the workplace are influenced by country’s culture compared to Dave Norton and Rob Thomsett’s
insights on agile adoption in the Netherlands and other countries, when they gave an agile workshop in
the Netherlands. According to Geert Hofstede's (1984) study, there are five cultural dimensions on
which each country can be compared, Hofstede indexed on a scale from 0 to 100.

Mary concluded that the chances for successful adoption on agile methods are strongly related to a low
masculinity index and low acceptance of power distance index such as in the Netherlands and
Scandinavia and a low uncertainty avoidance index, Netherlands and Scandinavia’s index lower than
world average. In Belgium, high power distance index, for instance, it's much more important to first
gain executive support for agile practices. In the Netherlands, you have to prove that agile works and
gives sustainability. Belgium’s higher score on uncertainty avoidance suggests less acceptance of
change. Belgian decision makers might have a higher need for clear measures, rules and more waterfall-
like methods. Netherland and certainly the UK and USA will be more open to other solutions. Germany
is in between. Based on cultural differences in Belgium and Germany, chances for agile project methods
to be adopted are less than in the other six countries. Furthermore, the UK, the USA and Australia seem
culturally less inclined to adopt agile practices.

S32 | Supporting Self-Organizing Agile Teams: What's Senior Management Got To Do With
It?

Author | Rashina Hoda, James Noble, and Stuart Marshall

Year 2011

Source 12th International Conference on XP, Pages 73-87

Type Journal

In this paper, the authors highlight the influence of organizational culture on the use of agile methods
based on theory study of 58 agile practitioners across 23 different software organization in New Zealand
and India. According to the author’s knowledge that an environment of isolation, timidity, and secrecy
will cause challenges. Their research supports the claim that an environment of openness,
communication, and trust is imperative for self-organizing agile teams. They found that senior
management support is critical environmental factor influencing self-organizing agile teams. The
influence of senior management in creating and maintaining such an environment is extremely
important. Since senior management influences the organizational structure and culture in an
organization. Agile methods challenge conventional management ideas, and demand changes in
organization structure, culture, and management practices in ftraditional software development
organizations.

54

The Success of Agile Software Development

533 | Empirical Investigation on Agile Methods Usage: Issues Identified from Early
Adopters in Malaysia

Author | Ani Liza Asnawi, Andrew M. Gravell, and Gary B. Wills

Year 2011, XP, Vol. 775pringer (2011) , p. 192-207

Source Proceeding of Agile Processes in Software Engineering and Extreme Programming -
12th International Conference, Pages 192-207

Type | Proceeding

The authors conducted a qualitative study to understand the issues that are faced by early adopters in
Malaysia where Agile methods are still relatively new. The initial study involves 13 participants including
project managers, CEOs, founders and software developers from seven organizations.

This study has shown that social and human aspects are important when using Agile methods. While
technical aspects have always been considered to exist in software development, they found these
factors to be less important when using Agile methods. In this study they coded issues about education
and training into knowledge. Education leans more towards understanding the concept and roles and
how Agile is different from other methods. It is essential to ensure that the customers fully understand
the concept or how Agile works. Agile provides opportunities for the customers, where they are also
taught to relay their requirements easier. If the customers do not understand the method, it is difficult
to use Agile. Apart from knowledge, mindset is equally important for the adoption factor of Agile
methods. The mindset should be from the stakeholders’ perspective. Agile is different in terms of its
way of working and thus reguires a change in mind set. In other words, those involved must be willing
to change the way they work especially those who have been using different methods for a long time.
All of the organizations they interviewed mentioned the importance of people’s attitude. Customers,
developers and people involved in Agile must understand their roles and responsibilities. From the
interviews, they found that small and startup companies are more appropriate for the culture of Agile.
In terms of communication, they found, agile that emphasized on communication helps to solve
problem and avoid wrong assumption about the requirements.

55

The Success of Agile Software Development

Appendix B: Agile Expert Interview Questions
This part provides the questionnaire that was used in the interview with agile consultants.

ok wnNPRE

® N

10.
11.

12.
13.
14.
15.
16.

17.

What is your opinion about agile practices, what is the strongest point?

How is important of the involvement of business expert in agile development?

How does the developer team communicate with the business expert?

Does the developer team have direct access to the business expert?

Are the requirements based on business value?

Are the business values always clearly stated and visible to all members of team by business
expert?

Does the developer team always understand properly the business expert needs and wants?
Are there metrics and project information displayed prominently via big visible chart for all
stakeholders to see? So the stakeholders know what the developer team working on

Is there a frequent review of the development process to make it more efficient?

What are the factors causing the changes in a project?

How are the agreements between the developer team and the business expert made and
accepted?

Are all the stake holders satisfied with the development process?

What are the aspects of development process that leads to stakeholder satisfaction?

Do the results always meet the stakeholder’s expectations?

Are all the stakeholders satisfied with the results?

What is your opinion about stakeholder satisfaction degree when used Agile methods compare

to Traditional methods?

How do you measure the stakeholder satisfaction with respect to software products that have

been developed? What are the measurement instruments?

56

The Success of Agile Software Development

Appendix C: Web Survey
This part provides the questionnaire that was used in the web survey with its results. There were 19
persons that have filled in the web survey.

1. Which best describes your current position?

a. |IT manager 11%
b. QA/tester 11%
c. Developer 58 %
d. Project manager 5%
e. other 16 %

2. How many years of work experience do you have?

a. <2years 5%
b. 2-5years 58 %
c. 5-10years 21 %
d. 10-20vyears 16 %
e. 20+ years 0%

3. How many people work in the IT/systems/development department within your company?

a. <11 42 %
b. 11-50 21%
c. 51-100 11%
d. 101-500 11%
e. 501-1000 11%
f. 1000+ 0%

4. Which sector is your organization working in?

a. Financial 0%
b. E-commerce 0%
c. Government 11%
d. IT Consultant 5%
e. Technology (including software) 53 %
f. other 32%

5. Did you ever hear about agile software development?

a. Yes 79 %
b. No 21 %

The Success of Agile Software Development

6. Did you ever work with agile software development in your projects?

a.

Yes (skip question 7, then you can
continue on the next questions)

No (answer question 7, then you can
leave this survey)

47 %

53 %

7. What is the most important reason why you don’t apply agile software development?
a. Organizational culture 33%
b. Customer, they aren’t willing to 11%
involve too much in the development
process
c. Projectscale, you think agile software 11 %
development doesn’t fit for your
project
d. Staff, unavailability of staff with 0%
qualified skills
e. Never knew that about Agile software 44 %
development
8. How many agile projects has your organization run?
a. 1-5 70 %
b. 6-10 20%
c. 11-20 10 %
d. 21+ 0%
e. We are still in the pilot phase 0%
9. How long has your organization been using agile software development methods?
a. <lyear 30 %
b. 1-2vyears 60 %
c. 3-4years 10 %
d. 5-10years 0%
e. >10years 0%
10. How much experience at agile software development do you personally have?
a. <lyear 30 %
b. 1-2vyears 50 %
c. 3-4years 10 %
d. 5-10years 10%
e. >10years 0%

58

The Success of Agile Software Development

11. What is the agile software development method you mostly use?

a. Scrum 90 %

b. Extreme Programming (XP) 0%

c. Dynamic Systems Development 10 %
Method (DSDM)

d. Rational Unified Process (RUP) 0%

e. other 0%

12.

According to your experience, what is the greatest benefit obtained from agile software

development?

a. Accelerate time to market 22 %
b. Increase productivity 22 %
c. Better alignment IT-Business 33%
d. Availability to manage changes 11%
e. Enhance software quality 0%
f. Decrease cost 11%

13. What percentages of your agile projects were successful? (Successful means that the project
has terminated and satisfied the stakeholders)
a. >91% 22 %
b. 71-90% 22%
c. 51-70% 22 %
d. <51% 0.00 %
e. Too early to tell 33%

14. What is the largest team size which your organization has been successful with agile
approaches?
a. 1-5people 33%
b. 6-10 people 55 %
c. 11-20 people 11%
d. 21-50 people 0%
e. 51+ people 0%

15.

Have you ever been involved in co-located agile teams? (Co-location means that not everyone is

in the same room)

a. Yes 56 %
b. No, (skip question 16) 44 %

59

The Success of Agile Software Development

16. What was the success rate for co-located agile teams?
a. >91% 17 %
b. 71-90% 0%
c. 51-70% 33%
d. <51% 0%
e. Don't know 50 %
17. How have agile approaches affected your productivity?
a. Much higher 11%
b. Somewhat higher 78 %
c. Nochange 0%
d. Somewhat lower 11%
e. Much lower 0%
18. How have agile approaches affected the quality of the systems produced?
a. Much higher 0%
b. Somewhat higher 78 %
c. Nochange 22 %
d. Somewhat lower 0%
e. Much lower 0%

19. How have agile approaches affected the cost of development?
a. Much higher 0%
b. Somewhat higher 33%
c. Nochange 44 %
d. Somewhat lower 22 %
e. Much lower 0%

20. How was the stakeholder involved in your agile projects?
a. Very much involved 0%
b. Involved 67 %
c. Alittle bit involved 33%
d. Not involved 0%

21.

How have agile approaches affected stakeholder satisfaction?
a. Much higher 38 %
b. Somewhat higher 38%
c. Nochange 25 %
d. Somewhat lower 0%
e. Much lower 0%

60

The Success of Agile Software Development

22. (Open question) In your opinion, what are the three most important things that make agile
software development successful?

23. (Open question) In your opinion, what are the three most important problems you encountered
with agile software development methods?

61

The Success of Agile Software Development

Appendix D: Project Plan

PROJECT STATEMENT

Formal Client

The Professorship of Software Quality and Testing of Fontys ICT act as the formal client in the
success of Agile Software Development — EQUA Project. The Professorship is the participant of the EQUA
(Early Quality Assurance in software production) research project.

Project Leader

As the project leader is Mr. Jacob Brunekreef. He is a Software Quality and Testing researcher
and teacher in Fontys University of Applied Sciences.

Current Situation

Agile software-development methods were created in response to the business community
asking for lighter weight, faster, and nimbler software development processes. This is especially the case
with the rapidly growing Internet software industry and mobile application environment.

However, like other methods, Agile software development methods have its own advantages
and unsuitable for every situation, projects, products, and people. Agile software-development methods
enable tolerance to the changes of requirements so it can be quickly addressed, but on the other hand,
agile software development methods lead to decreased productivity.

Project Justification

The Professorships of Software Quality and Testing of Fontys ICT is the participant in the EQUA
research project. EQUA (an acronym of Early Quality Assurance in software production) is a 4-year
research project focusing on quality issues related to the first phases of software development.

Agile software development is gaining interest from both academia and industry. Although
many articles and books have discussed about agile software-development methods, few of them
discussed the agile methods impact on software quality and customer satisfaction. Agile supporters
claim that the use of agile methods leads to higher software quality and customer satisfaction rather
than the use of traditional (waterfall-like) methods. Importantly, evidence for this claim was needed.
This was the starting point of this research, and resulted in the following research questions:

What theoretical and practical evidence can be found in literature for the claims mentioned above?
What practical evidence can be found in IT companies applying agile software-development
methods?

3. What selection factors of agile methods instead of traditional methods are influenced by cultural
aspect?

62

The Success of Agile Software Development

Project Product

The main product of this project is a document (Graduation thesis) with the answers on the four

research question that have to be described with conclusions and recommendations.

Project Deliverables

Deliverables:

- Project plan

- Questionnaire

- Interview minutes

- Literature study

- Graduation thesis

- Graduation presentation

Project Constraints

During the project, the researcher will communicate with both Business and IT Manager of some

Companies (as participants) in the Netherlands and Indonesia with the aim to obtain information

regarding the implementation and results of Agile methods in the field of software development. The

project is only analyzed information about Agile software development methods and do not develop

software.

Project Risks

The Success of agile software development — EQUA Project will be mainly human participation

associated, Business Manager and IT Manager of Company (participants). The greatest risks in this

project are time and communication. Those risks could arise from participants (Business and IT

manager) and/or the researcher himself.

Description Probability* Severity of Impact Prevention Response Action
Poor capture of 3 Failure to get important Focus on making a | Re-interview
data information good

questionnaire
Participant refuse | 3 Failure to make interview | Compile a list of Contact other
invitation appointment participants as participants
much as possible
Participantis a 3 Failure to make interview | Make flexible Give other time
busy person appointment appointment date | option to
and time participant
Lack of language | 2 Failure to get important Use voice recorder | Use translator
information during interview
Lack of time 2 Failure to make online Use online Send

63

The Success of Agile Software Development

interview appointment

questionnaire or
email to
communicate

questionnaire via
email

Difficulty finding
participants

Failure to get important
information from
participants

Find contact
person from
Internet, lecturer,
colleague as much

Contact colleague

as possible
*On scale 1 (lowest) to 5 (highest)
PROJECT PHASING
There are a total of 9 phases in this project:

Phase Activities Deliverable Deliverable ready
Project Drafting project plan Project plan - Thu3/1/12
Definition Meeting with project leader to

discuss drafted project plan
Initiating project plan
Research Finding scientific literature Literature - Fri3/2/12
Method Drafting methodology design study
Meeting with project leader to Methodology |- Thu3/22/12
discuss the best methodology that design

will be used
Making methodology design
consider cost and time constraints

Questionnaire
Design

Drafting questionnaire

Meeting with project leader to
discuss the drafted questionnaire
Making questionnaire

Questionnaire

- Thu3/29/12

Sample Meeting with project leader to Potential - Thu3/29/12
Selection discuss participants participants
Contacting participants list
Interview Interviewing Netherlands Collected - Tue5/8/12
participants (direct interview) information
Interviewing Indonesia participants
(online interview, online
questionnaire, email)
Data Entry Entering collected information to Grouped - Wed5/16/12
analyzed information
Analysis Analyzing information Analyzed - Thub5/24/12
information
Final Report Drafting final report Final report/ - Tue6/26/12
Meeting with project leader to Graduation
discuss drafted final report thesis

Making final report

Presentation

Presenting final report

Presentation

- Thu6/28/12

64

The Success of Agile Software Development

Planning of Activities

Expected Finish date
Activity Description Predecessor | duration
(day)
1 Drafting project plan - 5 Thu 2/9/12
Meeting with project leader to discuss 1 1 Fri 2/10/12
2 drafted project plan
3 Making final version of project plan 2 5 Fri 2/17/12
4 Finding scientific literature - 13 Fri 3/2/12
5 Drafting methodology design 4 6 Mon 3/12/12
Meeting with project leader to discuss Tue 3/13/12
. 5 1
6 methodology design
7 Making methodology design 6 6 Wed 3/21/12
8 Drafting questionnaire 4 6 Mon 3/12/12
Meeting with project leader to discuss 8 1 Tue 3/13/12
9 drafted questionnaire
10 Making questionnaire 9 11 Wed 3/28/12
Meeting with project leader to discuss i 1 Fri4/6/12
11 potential participants
12 Contacting participants 11 11 Mon 4/23/12
Interviewing participants (gathering i 16 Fri 5/11/12
13 information)
14 Entering information 13 6 Mon 5/21/12
15 Analyzing information 14 6 Tue 5/29/12
16 Drafting final report - 11 Fri 6/8/12
Meeting with project leader to discuss Mon 6/11/12
. 16 1
17 drafted final report
18 Making final report 17 1 Tue 6/26/12
19 Presenting final report 18 1 Wed 6/27/12
MANAGEMENT PLAN
Money

The success of Agile Software Development — EQUA Project’s cost throughout the duration of

the project:

- Travel expenses to the interview place in Netherlands (train, bus, tram)

Skills

Skills needed for this project are:

The Success of Agile Software Development

- Good writing and communication skill

- Good analytical skill
- Basic knowledge in Agile Software Development methods

Quality

The quality of this project depends on the answer of the research question with the conclusion

and recommendations, also the clarity and completeness of the project documentation.

Information
Project Methoqology Questionnaire Contact Pe.rson Data Final Report
plan Design Information
Formal R - - - - R, Gf, A
Client
Project R, Di, Gf, R, Di, Gf, A R, Di, Gf, A R, Di, Gf, A R, Di, R, Di, Gf, A
Leader A Gf, A
Wo, S, Di | Wo, S, Di Wo, S, Di Wo, S, Di Wo, S, Wo, S, Di
Researcher Di
Legenda:
R Receive Gf Give feedback Wo Work on
Di Discuss S Send A Approve
Time

The success of Agile Software Development — EQUA Project starts at February 3" 2012 and will

last for 20 weeks long until June.

Organization

Below is a chart that represents the organization of the success of Agile Software Development
— EQuA Project

66

The Success of Agile Software Development

The Professorship of
Software Quality and Testing
[Formal Client]

Leo van der Aalst
[Professor of Software
Quality and Testing]

Jacob Brunekreef
[Researcher & Project
Leader]

Raditeo Warma
[Researcher]

67

