
Design and Setup of a Demo Facility for
Wearables in Logistics

Final Thesis

Submitted by Marius Freyer

In fulfilment of the requirements for the degree
Bachelor of Science in Informatics

To be awarded by the
Fontys Hogeschool Techniek en Logistiek

Venlo, January 7, 2019

ii

Information page

Fontys Hogeschool Techniek en Logistiek
Postbus 141, 5900 AC Venlo

Final Thesis

Name of student Marius Freyer

Student number 2447800

Course Business Informatics

Period September 2018 - February 2019

Company Fontys Hogeschool Techniek and Logistiek

Address Tegelseweg 255

Post code / City 5912 BG Venlo

State The Netherlands

Company coach Stefan Sobek

Email s.sobek@fontys.nl

University coach Thijs Dorssers

Email t.dorssers@fontys.nl

Examinator: Pieter van den Hombergh

Non-disclosure agreement: No

Number of words: 8403

iii

Abstract

Wearables are a rather new technology that can be used to enhance logistics processes. Es-
pecially small- and medium-sized companies (SMEs) in the logistics industry often refuse to
adopt new technologies due to uncertainty and costs. To overcome this issue the LOGwear
project was founded by the Euregio and different other partners. LOGwear aims for provid-
ing SMEs with knowledge and first-hand experience with wearables in logistics processes
without investing a huge amount of money upfront.

While the LOGwear project already has a so-called ”Knowledge Base” where SMEs can find
a lot of information about different wearables and how they can improve logistics processes,
first-hand experience is only provided for a small number of companies that were chosen for
pilots. Do also give other companies a chance to test wearables in a realistic environment or
even their own company, a demo facility is created and described in this report.

This report systematically analyzes the requirements for building this Demo Facility. Based
on these requirements a hardware platform for the demo facility is created and research
regarding suitable existing software is done. As no suitable software could be found during
the research, the design and implementation process of a custom-built software solution is
described in the report. This process includes designing an architecture of a NodeJS-based
backend that provides a REST API and a frontend based on Angular. The implementation of
this architecture using Typescript is then described in the report with focus on the backend.

As the result a hardware and software platform is available for simulating one logistics pro-
cess (order picking) with wearables. The platform is ready to be extended for future use
with more processes and wearables.

iv

Statement of Authorship

I, the undersigned, hereby certify that I have compiled and written the attached document
and the underlying work without assistance from anyone except the specifically assigned
academic supervisors and examinors. This work is solely my own, and I am solely responsi-
ble for the content, organization, and making of this document.

I hereby acknowledge that I have read the instructions for preparation and submission of
documents provided by my course/my academic institution, and I understand that this
document will not be accepted for evaluation or for the award of academic credits if it is
determined that it has not been prepared in compliance with those instructions and this
statement of authenticity.

I further certify that I did not commit plagiarism, did neither take over nor paraphrase
(digital or printed, translated or original) material (e.g. ideas, data, pieces of text, figures,
diagrams, tables, recordings, videos, code, ...) produced by others without correct and com-
plete citation and correct and complete reference of the source(s). I understand that this
document and the underlying work will not be accepted for evaluation or for the award of
academic credits if it is determined that it embodies plagiarism.

Name: Marius Freyer

Student number: 2447800

Place / Date: Venlo, January 7, 2019

Signature:

v

Contents

Information page ii

Abstract iii

Statement of Authorship iv

List of figures vii

List of tables viii

Abbreviations ix

Glossary x

1 Introduction 1
1.1 The LOGwear project . 1
1.2 Problem Description . 1
1.3 Document structure . 2

2 Project Description 3
2.1 Assignment . 3
2.2 Project scope . 3
2.3 Project phases and deliverables . 3
2.4 Project management . 4
2.5 Quality assurance . 5
2.6 Stakeholder . 5
2.7 Time planning . 6
2.8 Risk analysis . 6

3 Analysis 9
3.1 Usage scenarios . 9
3.2 Wearables Requirements . 9
3.3 Software Requirements Specification . 10
3.4 Use Cases . 12
3.5 Mockups . 13
3.6 Logistics processes . 14

4 Research 16
4.1 Research setup . 16
4.2 Research result . 16

vi

5 Design 18
5.1 Hardware Selection . 18
5.2 Architecture and Technology . 20
5.3 RESTful API design . 21
5.4 Basic software design . 23
5.5 Simulation logic . 27
5.6 Deployment . 29

6 Implementation 31
6.1 Basic Software Design . 31
6.2 Simulation . 36
6.3 Deployment . 39
6.4 Connecting the Demo Facility and Wearables 42

7 Conclusion 43

A Use Cases 47

B Software Requirements Specifications 51

C Mockups 63

D Logistics Processes 68

E Software Design 69

F Research on Warehouse Management Systems 70

vii

List of Figures

1 Time planning (Gantt) . 6
2 Mockup: Create process activities . 14
3 Process: Order Picking . 15
4 Hardware setup 1 . 19
5 High-level Software Architecture . 20
6 Class Diagram: Repository pattern . 24
7 Sequence Diagram: Request sequence with controllers/services separation . . 25
8 Class Diagram: Model relations . 26
9 Simulation logic . 28
10 Container structure . 29
11 Example resource controller method . 32
12 Example service method . 32
13 Code sample: GenericResourceController . 33
14 Code sample: GenericResourceService . 34
15 ProcessActivity model . 34
16 ProcessActivityController . 35
17 ProcessActivityService . 35
18 ”startSimulation”-method . 37
19 ”createSimulationActivities”-method . 38
20 ”doActivity”-method . 39
21 Dockerfile of the backend . 40
22 Dockerfile of the frontend . 40
23 Docker Compose file . 41
24 Screenshot: Frontend running on mobile device 42
25 Use Case Diagram . 47
26 Mockup: Create Environment . 63
27 Mockup: Create Process . 64
28 Mockup: Edit Process/Create Process Activities 65
29 Mockup: List Processes . 66
30 Mockup: Simulation View . 67
31 Process: Order Picking . 68
32 Process: Putaway . 68
33 Class Diagram: Software design . 69

viii

List of Tables

1 Activities and Deliverables . 4
2 Risk analysis . 7
3 Risk Visualisation . 8
4 Wearables of the LOGwear project . 10
5 Use Case: Create process activity . 13
6 Research result . 16
7 Wearables of the LOGwear project . 19
8 Use Case: Create environment . 47
9 Use Case: List processes . 48
10 Use Case: Create process . 48
11 Use Case: Create process activity . 49
12 Use Case: Start simulation . 49
13 Use Case: Do a Simulation . 50
14 Research candidates (longlist) . 76
15 Research candidates (shortlist) . 76
16 Research result . 82

ix

Abbreviations

CRUD Create, Read, Delete, Remove operations.

MVP Minimum Viable Product.

SME Small and medium-sized enterprises.

SRS Software Requirements Specification.

WMS Warehouse Management System.

x

Glossary

Angular Angular is a Typescript-based frontend framework.

Container A self-contained unit of an application containing all dependencies in a prede-
fined environment.

Docker A technology for container virtualization.

Express A framework for NodeJS for creating REST APIs.

iMac Pro An all-in-one PC manufactured by Apple featuring workstation-grade hardware.

JSON Is a compact an easy to read data format for exchanging data between applications.

MacBook Pro A Notebook manufactured by Apple.

Minimum Viable Product A minimum working version of a product that is developed.

MongoDB MongoDB is a document-based NoSQL database.

NodeJS A technology based on Google Chrome’s JavaScript engine that allows running
JavaScript on serverside.

Order Picking A logistics process for making products available for shipping.

Putaway A logistics process of stowing good after they are received.

REST API A REST API is a communication interface for client and server based on HTTP.

Software Requirements Specification A software requirements specification (SRS) describes
a (software) system to be developed.

Typescript A programming language that is a super set of JavaScript. It extends JavaScript
with classes, static types and other functionality.

Warehouse Management System A software system that allows organizing and controlling
operations inside a warehouse.

Wearable An electronic device that can be comfortably worn on the body.

1. Introduction 1

1 Introduction

This section introduces the company the project is done with and describes the assignment.

1.1 The LOGwear project

The project LOGwear - Using wearables to optimize logistic processes examines how logistic
processes, especially in small- and medium-sized enterprises (SMEs), can be optimized by
using wearables and which wearables are suitable for this purpose. The aim is to provide
companies with an individual online tool for an initial assessment of the extent to which
their own processes can be improved with the help of wearables and to offer support in
the implementation of a wearable solution. The LOGwear project is part of the INTERREG
programme Germany-Netherlands and is co-financed with approx. 1.1 million Euro by the
European Union, the Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie
des Landes Nordrhein-Westfalen and the Provincie Limburg.

The overriding goals of LOGwear are to increase cross-border innovative strength in the
euregio rhein-maas-nord and to increase product and process innovations in the logistics
sector, which is important for this region. The main objective of LOGwear is to enable SMEs
to use new technologies (in this case wearables) for the innovative development of their
processes. In three work packages different measures are taken for this purpose. These
include the development of a knowledge database to support the decision-making process
of companies, the definition of a reference architecture to facilitate the implementation of
software and hardware, and the execution of pilot projects at companies in the region.

The use of wearables also offers the possibility of overcoming language barriers through the
use of multilingual software and thus employing staff across borders. (Das Project, 2018)

1.2 Problem Description

The LOGwear project aims for providing SMEs with knowledge about wearables by consult-
ing them via a knowledge base but also giving them real-life experience with wearables in
logistics via a demo facility.

Currently only customer-specific demo environments for testing the wearables in different
logistics processes exist. A general demo environment for testing different wearables with
realistic example processes is not yet available. Such a demo environment is needed as the
SMEs shall also be able to experience the advantages and disadvantages of different wear-
ables next to being consulted via the knowledge base the LOGwear project also provides.

1. Introduction 2

1.3 Document structure

The document is divided into seven chapters. Chapter 1 and 2 provide a general overview
of the environment and background of the project and define the assignment and meth-
ods used for fulfilling the projects goals. Chapter 3 describes the analysis phase of the
project where the requirements of the demo facility project are defined. Chapter 4 sums
up the research results regarding potentially existing software solutions that could be used
for the demo facility instead of building a custom software. The design of the demo facility
hardware- and software-wise is discussed in chapter 5. Chapter 6 covers the implementa-
tion of the design discussed in chapter 5. Chapter 7 finally concludes the report and reflects
the results of the project. It also gives an outlook to the reader on how the project can be
improved and extended.

2. Project Description 3

2 Project Description

2.1 Assignment

The assignment of the project is building a demo facility for trying out wearables in different
logistics processes. This includes selecting and purchasing the required hardware as well as
implementing the software for the interaction between the wearables and the demo facility.

2.2 Project scope

In scope of the project is ordering and building the hardware side of the demo facility and
designing and implementing the software side of the demo facility. For the hardware side
this includes the workstation, network setup, etc. On software side in scope is the develop-
ment of a minimum viable product either by using existing software solutions or by building
a custom one. This depends on the outcome of the research part of the project. The mini-
mum is to have one process working with one wearable in a predefined environment. If time
is left more wearables are preferred to processes.

Not in scope is anything that exceeds this minimum viable product (MVP), like definition of
different environments, multiple processes, company-specific environments, etc.

2.3 Project phases and deliverables

The project in general consists of four different parts that need to be worked on. The project
begins with a Phase of requirements engineering where requirements for the components
and scenarios of the demo facility are specified. The second phase of the project is a research
regarding a suitable (Warehouse Management) System that can be used to mock different
scenarios and processes for testing the wearables using the demo facility. The third part is
implementing or configuring an WMS-like system based on the results of the research. The
last phase is the actual implementation of different processes in the system and connecting
different wearables.

2. Project Description 4

Identifier Activity Deliverable

A Requirements Engineering Software Requirements Specifica-
tion

A.1 Scenarios Specification of supported scenarios

A.2 Components Specification of required components
(hardware)

A.3 System Functional requirements of the soft-
ware system

B WMS selection Make or buy WMS

B.1 Specifying Criteria

B.2 Candidate selection

B.3 Assessing candidates

C WMS Implementation/Configura-
tion

Running WMS

D Process/Scenario implementation Interaction between wearables and
WMS

D.1 Defining process in system

D.2 Connecting wearables

Table 1: Activities and Deliverables

2.4 Project management

For creating the demo facility, a hybrid approach of waterfall and SCRUM are used. For
the first part of the project that is mainly focused on analysis, requirements engineering
and research, the waterfall approach is used. This is necessary, as selecting and buying the
hardware needed for the demo facility is time critical as it relies on budget provided by the
Euregio and other project sponsors.

For the second part of the project the development approach is switched to an agile SCRUM-
like approach. This part is mainly focused on designing and implementing the software part
of the demo facility.

For planning purposes, for creating the backlog and the sprints, Jira is used as the project
management tool. Jira is chosen as the LOGwear project already uses Jira for other projects
that are carried out in a SCRUM approach and Jira does support SCRUM out of the box.

Meetings with the product owner are held every Wednesday. These meetings are used for

2. Project Description 5

sprint reviews, retrospectives and further sprint planning.

Backlog items are estimated using story points featuring the Fibonacci sequence which is a
common practise using SCRUM.

2.5 Quality assurance

The quality measures used for the Demo Facility project range from reviews of (sub-)deliverables
to automatic testing during the development phase.

During the first part of the project that is done waterfall-based, meetings are scheduled
bi-weekly with the customer. These meetings are used to review the deliverables like the
Software Requirements Specification (SRS), the use cases and the research findings. This is
done to find quality issues in an early stage so they can be fixed soon after they occurred.

For the second part of the project that is SCRUM-based, progress is reviewed in each weekly
sprint meeting. Apart from that automatic measures are taken during the development pro-
cess. To ensure quality, the implementation is done test-driven. As a unit testing framework,
Jest is used. Jest is a Javascript testing framework developed by Facebook that was originally
intended for usage with React. However Jest nowadays provides Typescript support and
built-in code coverage reports. (Jest, n.d.) All services and models are fully covered with
unit tests.

To keep the code clean and uniform, Linting is used with Typescript. Linting is a technique
that analyzes code for stylistic and programmatic errors before even compiling.(Code Linting
in JavaScript, n.d.)

2.6 Stakeholder

The following parties are involved in the project:

• Company Coach: Stefan Sobek

• University Coach: Thijs Dorssers

• Customers Demo Facility: Gregor Schwake, Danny Jonker

• Fontys ILEC

2. Project Description 6

2.7 Time planning

Calendar week 2018/19

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 1

Project setup/introduction

A Requirements engineering

SRS

B WMS selection

Decided on WMS

C WMS installation/configuration

Running WMS

D Process/Scenarios implementation

Interaction wearables and WMS

Mid-term report

Final report

Figure 1: Time planning (Gantt)

Figure 1 shows the initial time planning of the project. This planning mostly worked out
during the project. Only activity C could not start before the activity B was ended. This was
because the research part showed that there was no suitable system for usage with the Demo
Facility. So the start of the design and implementation of the software part was slightly
delayed.

2.8 Risk analysis

For the risk analysis three different types of risks are taken into account. These are external
risks (E) related to external stakeholders, internal risks (I) related to the project work and
technical risks (T).

2. Project Description 7

Identifier Description Mitigation

T-1 Connecting a wearable to the WMS/-
Mock WMS is not possible

If it is not possible to connect a wear-
able to the WMS, other wearables are
getting a higher prioritization

I-1 Too broad project scope The project scope is limited at project
start and only widened if enough
time is left

E-1 No available WMS fulfills the set re-
quirements

If no suitable WMS is available on the
market, a fake WMS will be created

E-2 Customer changes requirements of
demo facility in later project stages

Regular feedback sessions with cus-
tomer (bi-weekly)

E-3 Long delivery time of required hard-
ware (Workstation)

Ordering hardware very early in
project

E-4 Long delivery time of required hard-
ware (Wearables)

Ordering hardware very early in
project

Table 2: Risk analysis

Each risk scores a specific value calculated by impact multiplied with probability. Impact
and probability are measured on a scale from 1 to 5 where 5 is the highest impact or proba-
bility. Values from 1-5 are considered low risk, values from 6-10 a medium risk, values from
12-16 a high risk and values from 20-25 a very high risk.

T-1: As one requirement for the WMS is an interface the probability of this risk is rather low.
However if this happens with multiple wearables the impact is very high.

I-1: As the scope of the project is very limited from the beginning, the probability of a too
wide scope is rather low. The impact of not satisfying the project scope is really high as the
scope is already rather limited.

E-1: The probability of not finding a suitable WMS for the purpose of the demo facility is
quite high as it is a very special environment. The impact is medium as an own implemen-
tation of an WMS-like system should be possible.

E-2: As the requirements were set and agreed on in early project stages, significant changes
in requirements have a low probability. The impact although would rather high.

E-3: A long delivery time of the workstation components of the demo facility is not very
probable as only items in stock will be ordered. If no suitable workstation components can
be delivery this has a high impact.

E-4: A long delivery time of wearables is not very probable as only items in stock will be

2. Project Description 8

ordered. As there are already some wearables available for usage with the demo facility, the
impact is quite low.

5 T-1/E-3

4 I-1

3 E-2 E-1

2 E-4

1

Impact/

Probability
1 2 3 4 5

Table 3: Risk Visualisation

3. Analysis 9

3 Analysis

This section describes the analysis phase of the project. The aim of this phase is to gather
the requirements of the demo facility. This phase is split into several parts. First a high-
level overview about the required functionality of the demo facility is defined by different
usage scenarios of the demo facility and what it is supposed to do at each of them. Another
one is a short introduction to wearables in terms of what they are, how they connect and
what they are capable of. This is followed by a classical software engineering approach of
creating software requirements specifications, derived use cases from those requirements
and verifying them by creating mockups showing these use cases and workflow visually.
Last but not least the logistics processes are analyzed in order to get a better understanding
on how they have to be integrated in the demo facility.

3.1 Usage scenarios

As mentioned above, the starting point for the requirements engineering phase are the usage
scenarios of the demo facility which were defined by the customer upfront.

The first scenario is the usage by companies visiting Fontys for the purpose of making first
experience with wearables in logistics processes. For this purpose the user shall be able
to try out various predefined processes with sample data utilizing various wearables. The
same applies for the second scenario of taking a portable slimmed-down version of the demo
facility to a company for testing wearables in logistics processes. In addition in this scenario
the visited company shall be able to alter the data in the system to represent their actual
data of their warehouse.

The third scenario is an ”Open Day” at Fontys Hogeschool Techniek en Logistiek. For this
scenario the demo facility should be used to represent Fontys’ project work and practical
students’ projects.

The fourth scenario is using the demo facility for student projects of the information tech-
nology department of Fontys. For this scenario students should be able to modify the demo
facility software development wise and add their own components to the demo facility for
learning purposes and experiencing the combination of logistics and IT.

3.2 Wearables Requirements

Wearables are electronic devices that can be worn as clothing or accessories. They can have
similar capabilities as computers or other technical devices such as barcode scanners or
displays while usually keeping the hands of the wearing person free. (Büyüközkan et al.,
2016)

3. Analysis 10

For the demo facility only wearables already owned by the LOGwear project are considered.
In addition only wearables from 2017 and newer are taken as the development in terms of
speed and support are fast in this field of technology.

The following table shows the wearables that are considered for usage with the demo facility.
It shows the exact model, a short description and how they can be connected to the demo
facility.

Model Description Connection

ProGlove The ProGlove is a glove equipped with a barcode
scanner.

USB

ZEBRA RS6000 The Zebra RS6000 is a ring barcode scanner. It
can be worn on two fingers.

Bluetooth

ZEBRA WT6000 The Zebra WT6000 is an arm terminal running
Android.

Bluetooth, WIFI,
USB, NFC

Google Glass 2 The Google glass is a smart glass running a
slimmed-down version of Android.

Bluetooth, WIFI,
USB

Table 4: Wearables of the LOGwear project

3.3 Software Requirements Specification

The Software Requirements Specification document describes the overall goals of the demo
facility and furthermore lists specific requirements of the demo facility. This document is
based upon the defined usage scenarios (refer to section 3.1), an initial customer interview
and two following customer meetings.

Before writing the SRS, the customer specified that the final software part of the demo facil-
ity should follow a backend/frontend structure so these terms are already mentioned in the
SRS.

The SRS specifies different types of requirements which can be divided roughly into func-
tional and non-functional requirements. The functional requirements describe functionality
of the software part of the demo facility and are mostly derived from the usage scenarios.
The non-functional requirements partly describe requirements of the software architecture
as well as requirements of the hardware part of the demo facility. These requirements are
far more wide-spread and are mostly derived from various customer meetings and are more
often subject to change than the functional requirements.

3. Analysis 11

3.3.1 Examples of specific requirements

To give an impression of the different types of requirements, a few of most types are men-
tioned below. All further analysis results like Use Cases will refer to these requirements
when possible to give an impression on how the requirements influence design decisions
and the implementation of the application. The entire SRS document can be found in Ap-
pendix B.

3.3.1.1 Notation of specific requirements

All specific requirements contain of three parts. The first part is the identifier that is unique
and provides an indication of the type of the requirements. Possible types are Functional
Requirements (Identifier: FR), External Interface Requirements (Identifier: IR), Maintenance
Requirements (Identifier: MR) and Design Contraints (Identifier: DC). The second part is
the priority of the requirements. This is done according to RFC 2119 which defines the
following:

MUST This word, or the terms ”REQUIRED” or ”SHALL”, mean that the def-
inition is an absolute requirement of the specification. MUST NOT This phrase,
or the phrase ”SHALL NOT”, mean that the definition is an absolute prohibition
of the specification.

SHOULD This word, or the adjective ”RECOMMENDED”, mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before choos-
ing a different course.

SHOULD NOT This phrase, or the phrase ”NOT RECOMMENDED” mean
that there may exist valid reasons in particular circumstances when the partic-
ular behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

MAY This word, or the adjective ”OPTIONAL”, mean that an item is truly
optional. [...] (Bradner, 1997)

Instead of MUST and MUST NOT the terms SHALL and SHALL NOT are used.

The third part of each requirement describes the requirement and repeats the flag word used
for prioritization.

The following section will provide an example for each of the four requirement types.

3. Analysis 12

3.3.1.2 Examples of functional requirements

The functional requirements describe what the system shall or should do and how it shall or
should behave. So these requirements can usually be directly transformed into several use
cases. An example of a functional requirements is the following:

Identifier Priority Description

FR-1 <Shall> The frontend shall provide a way to add processes to the system
and modify processes of the system.

3.3.1.3 Examples of non-functional requirements

The non-functional are further categorized in different types of requirement which can be
differentiated in this section by their identifier.

Identifier Priority Description

IR-1 <Shall> The client shall be able to communicate via bluetooth in version
4.0+.

MR-4 <Shall> The demo facility shall be start-able/runnable by users with ad-
ministrator role without an IT background.

DC-1 <Shall> The demo facility shall be fully functional without requiring an
internet connection/offline.

3.4 Use Cases

Use Cases describe outwardly visible requirements of the software system. They are used
to create and valide the software design and ensure meeting all requirements. (Schneider
et al., 2001)

The Use Cases are created on top of the functional requirements of the SRS and give detailed
scenarios of how the user will interact with the system. Furthermore these Use Cases will
also be used during the agile development of the software. Section 3.4.1 provides an example
for a use case. All use cases can be found in Appendix A.

3.4.1 Examples

As mentioned above the Use Cases are based upon the functional requirements of the SRS. So
the following Use Cases are examples of how the functional requirements are transformed
into Use Cases. To make the whole requirements engineering process traceable the Use
Cases include a back reference to the functional requirements if given.

3. Analysis 13

Use Case Create Process Activity

Code UC-4

Requirement FR-1

Actor Administrator

Description The administrator creates activities for a process.

Precondition(s) • The user is authenticated and has the administrator role
• At least one process exists.

Scenario 1. User opens the administration interface in the frontend.
2. User navigates to the process administration page.
3. User opens list of existing processes.
4. User opens one of the processes.
5. User clicks on ”Activities” tab.
6. User clicks ”Create activity”.
7. User chooses type of activity.
8. User enters data input/output.
9. User saves activity.

10. System checks if provided data is valid.

Extension

Result Process activity is created.

Table 5: Use Case: Create process activity

3.5 Mockups

For verification of the gathered requirements and to give a visual impression of the use
cases, mockups are created. These mockups show how the product will behave and enables
the customer to make corrections before the actual product is built. As the mockups are
built on top of the use cases, below the mockups for the process creation, process activity
creation and simulation of a process are shown as examples. All other mockups can be found
in Appendix C.

3. Analysis 14

Figure 2: Mockup: Create process activities

In Figure 2 the visual representation of the use case ”Create Process Activity” is shown. It
already gives an impression how the user interface for the creation of process activities will
look like in later project stages.

3.6 Logistics processes

As the demo facility is aimed to allow simulation of various different logistics processes,
these processes need to be analyzed and modelled before creating the demo facility. Accord-
ing to the SRS, the most important process for the first version of the demo facility is the
order picking process followed by the putaway process.

There are plenty of variants of this process and this process also tends to be company-
specific. For the demo facility the order picking process is modelled according to the re-
search results already available in the LOGwear project. As the LOGwear project does not

3. Analysis 15

yet provide modelled versions of the processes and only lists activities, these processes are
modelled for the demo facility project.

Both processes can be found in Appendix D.

In figure 3 the order picking process is shown.

Figure 3: Process: Order Picking

As the order picking process is the main process for the MVP of the demo facility, this
process was analyzed first. Key findings are that this process has several activities at the
start and several activities at the end that only need to be done once per sequence. Between
these activities there are activities that are repeated based on how many items need to be
picked for fulfilling the order. As this could also be found in other processes without further
analysis, this logic is used for designing an approach that could be reused for other order-
based processes with further extension/modification.

4. Research 16

4 Research

This section sums up the research results of the Warehouse Management System selection.
The entire research can be found in Appendix F.

The purpose of the research is finding an existing software solution that is capable of ful-
filling the gathered requirements regarding the software part of the demo facility instead of
building a WMS-like system specifically for the demo facility.

4.1 Research setup

The research criteria were setup according to the Software Requirements Specification Doc-
ument (refer to B) and each criteria was assigned with a score model between 0 and 3 points.
Each score was defined prior to further investigation. After defining the criteria, every cri-
teria was assigned with a weight between 1 and 9, where 1 is a low priority criterion and 9
is a very, very high priority criterion. Certain criteria (e.g. price) were taken as KO criteria
to filter out candidates before assessing them in detail.

The candidates were selected based on a book and recommendation lists of certain websites.
Additionally the already existing WMS-like implementation of a LOGwear pilot was also
considered as a candidate.

4.2 Research result

Candidate/
Criteria

Weight Max.
Score

OFBiz OpenBoxes Metasfresh Nuclos

Processes 9 3 9 9 18 18

I/O 9 3 0 9 0 0

Extendable 6 3 0 6 6 12

Simplicity 6 3 0 12 6 0

Setup 3 3 3 6 9 9

Platforms 3 3 3 3 9 9

Clients 1 3 3 3 3 3

Overall 30 48 51 51

Table 6: Research result

4. Research 17

The research result (refer to table 6) shows that three of the candidates score either equally
or almost equally and Apache OFBiz follows with a big margin. So OFBiz is no taken into
consideration for further discussion of the results.

However, if you look closely, the three remaining candidates also score quite low points as
they not even reach half of the possible 111 points. Especially taking into account the most
important criteria Process/activity support and Input/Output matching none of the WMS
in the comparison can score more than 9 of 27 points in average with Metasfresh and Nuclos
even scoring 0 points in Input/Output matching.

Comparing the WMS with a self-made solution that is directly designed for the purpose
of the Demo Facility, the required effort for a self-made solution seems to be lower than
customizing one of the existing solutions. Especially in terms of the Process/Activity sup-
port and the Input/Output matching a custom-made software solution would be better as
it would be designed to define own processes with custom data. Also in terms of being
extendible a custom made solution is better as all design-related documentation including
all source codes would be available. Also an external API can be fully documented and
especially for the purpose of the demo facility which enhances extendability.

So the choice between using an existing system and building a custom one fell upon building
a custom one.

5. Design 18

5 Design

This section describes the hardware and software design of the demo facility. Most of the
design work is based upon the requirements specification in section 3 and the entire SRS
document in Appendix B. Focus lays on the software design of the backend.

A full overview over the software design can be found in Appendix E.

5.1 Hardware Selection

The hardware selection of the demo facility is mostly based on the non-functional require-
ments of the Software Requirements Specification as found in Appendix B.

As according to DC-9 and DC-10, the demo facility will consists of two independent envi-
ronments, one stationary and one portable environment.

5.1.1 Computers

Due to requirements DC-3 and DC-4 a Mac must be used as the computers as only Macs
can run Windows and macOS. DC-11 indicates that for the stationary environment one of
the two all-in-one solutions of Apple shall be used, namely an iMac or iMac Pro. For the
portable demo facility a Macbook Pro with 15 inch screen is chosen to fulfill requirement
DC-10.2.

As the computers shall also be used for development purposes (DC-9.3) also including de-
velopment using the Unity 3D game engine, a powerful computer is needed. To reduce
compiling times and for multi-tasking CPU and RAM resources are upgraded.

5.1.2 Networking

As requirements DC-1 and DC-2 indicate building a local network for the demo facility,
therefore a router is required. As DC-11 also applies to the networking part of the demo
facility the router should have wifi to reduce the usage of cables. To support the capabilities
of the computers, the router should support the latest wifi standard 802.11ac.

While the portable demo facility consists of only one workstation, a local wifi network is still
required to connect wearables with wifi connection to the demo facility backend. Therefore
the same router model is also used for the demo facility.

5. Design 19

5.1.3 Presentation

For presentation, especially at companies or on Open Days at Fontys, a beamer and screen
is needed. These will be used for presentation, for showing the graphical interface of the
demo faciltity or for showing what the user sees through the wearable.

5.1.4 Full Hardware List

The following hardware is chosen for the demo facility. The workstations and the laptop
were upgraded as the budget allowed.

Amount Type Name Extra configu-
ration

2 Workstation iMac Pro 64 GB RAM

1 Notebook Macbook Pro 15 inch 32 GB RAM,
512 GB SSD

2 Router TP-Link Archer C7 -

1 Projector Optoma GT1070Xe Wi -

1 Projection screen Mobile projection screen (160 cm x 90
cm)

-

Table 7: Wearables of the LOGwear project

Figure 4 gives an impression how the stationary Demo Facility looks like. Both workstations
provide bluetooth and WIFI connectivity and are connected via the network provided by the
WIFI router. Wearables can either be connected to the workstations or to the WIFI network
the router provides.

Figure 4: Hardware setup 2

2Icons made by Smashicons, Pixel Buddha, Gregor Cresnar, mavadee from www.flaticon.com

5. Design 20

5.2 Architecture and Technology

The software part of the Demo Facility follows a server client architecture with a backend
holding the data and implementing the business logic and the frontend for visualization and
user interaction. This general architecture was specified during the requirements engineer-
ing phase. Figure 5 below shows the high-level architecture which is explained below.

Application

NodeJS

MongoDB

ExpressMongoose

R
E
S
T

Backend

Frontend
Angular

Requests

Wearables

Figure 5: High-level Software Architecture

The backend application is developed with NodeJS and the Express framework for build-
ing a RESTful API. NodeJS is built on top of Google Chrome’s JavsScript engine and allows
to run JavaScript-based applications on server side. (Lei et al., 2014) Instead of Javascript,
Typescript is used as the programming language. Typescript is a superset of Javascript and
enriches Javascript with classes, interfaces, modules and types. (Bierman et al., 2014) The
intention behind choosing Typescript over Javascript is to make the software easier to main-
tain as Typescript is already used in other LOGwear projects like in the Angular frontend of
the Knowledge Base and will also be used for the Angular frontend of the Demo Facility. So
the whole software part of the demo facility is developed in one programming language.

For persistence MongoDB with Mongoose is used as database and database driver combina-
tion. MongoDB is commonly used with NodeJS applications and can interact natively with
Javascript objects and JSON. (Dayley, 2014) Being schemaless, MongoDB also allows for big
changes in database structure during development (Aghi et al., 2015) and so supports the
agile development process of the demo facility. For connecting the application to the Mon-
goDB Mongoose is used as the database driver.

While a frontend is developed in scope of the project, it is not explained in detail in this
report. This is because the frontend is a basic Angular application consuming the REST API
of the backend. As there are no special business logic or design decisions involved, focus in
this report lays on the backend.

5. Design 21

5.3 RESTful API design

The RESTful API provided by the backend application is the main communication inter-
face for the Angular-based frontend and is also intended for connecting more capable wear-
ables that can directly interact with the backend. Having a good API design that follows
conventions and best practises is therefore crucial to prepare the Demo Facility for further
extensions in the future. The API design is based on the scientific paper ”REST APIs: A
Large-Scale Analysis of Compliance with Principles and Best Practices” by Roriguez C. et al
(2016) with minor tweaks.

5.3.1 Operations

The operations are represented by the standard HTTP methods GET, POST, PATCH and
DELETE. The following list shows which HTTP method is responsible for which kind of
operation.

HTTP Method Operation

GET Retrieves a single resource or multiple resources as an array.

POST Creates a single resource or multiple resources.

PATCH Updates a single resource or multiple resources.

DELETE Deletes a single resource or multiple resources.

This clear separation based on HTTP methods makes it possible to perform multiple opera-
tions on one API endpoint. This advantage is used for the endpoint modelling described in
the next section.

5.3.2 Endpoint design

For the endpoint design nouns are used for representing the resources and the different op-
erations of these resources are represented by the different HTTP methods as explained in
section 5.3.1. Verbs for different actions are avoided in the API endpoints. The following
table gives an example for the endpoint design for the ”Process” resource and is also appli-
cable for all other resources and the simulation endpoints.

5. Design 22

Endpoints Endpoints Description

/api/processes GET Retrieves an array of multiple processes.

/api/processes POST Creates a new processes resource or set of
process resources.

/api/processes PATCH Updates a processes resource or set of pro-
cess resources.

/api/processes DELETE Updates a processes resource or set of pro-
cess resources.

/api/processes/:id GET Retrieves a specific process.

/api/processes/:id PATCH Updates a specific process.

/api/simulation/

process/:processId/

order/:orderId POST Creates a simulation or retrieves simulation
data if simulation already exists

/api/simulation/

process/:processId/

order/:orderId/reset POST Resets simulation and pulls new data from
process and orders

/api/simulation/

process/:processId/

order/:orderId/delete POST Deletes a simulation

/api/simulationActivity/

:id POST Checks input data against expected value of
simulation activity

5.3.3 Request and Response Payload

The Payload of POST and PATCH requests and responses and the payload of all GET re-
sponses is in JSON format. Depending on the response type, a specific HTTP status code is
sent back indicating if the operation was successful (status 200 or 201) or not. If the oper-
ation is successful, the status code also indicates the reason for the failure (e.g. 401 for not
being authorized or 500 for a server error). The format of the response is also standardized.

For successful operations delivering back data the ”success” indicator is true und all data is
send back after the ”data” property of the JSON response. The status code is 200 or 201 if a
resource was created for the request.

5. Design 23

1 {
2 "success": true,

3 "data": {
4 "_id": "5bfd387ef43ba91b21bfcf44",

5 "name": "Process name",

6 "createdAt": "2018-11-27T12:28:46.574Z"

7 }
8 }

In case the operations goes wrong and cannot be completed as requested, an error is sent
back in the response. The ”success” indicator is set to false and explanations of the error
are sent back in the ”error” property of the response. Furthermore a matching status code
is sent back, in the example below status code 500 as the requests caused an error on the
server.

1 {
2 "success": false,

3 "error": {
4 "message": "Error message"

5 }
6 }

5.4 Basic software design

The following section describes the basic design principles of the demo facility backend. It
describes the routing and the interaction between the controllers, services and the database.
Also the design of the different resources/models and their relations are described.

5.4.1 Separation of Controllers and Services

The controllers of the software are just responsible for forwarding data from incoming re-
quests to services and sending responses with the data returned by those services. This
means that all business logic and database interaction is handled by the services. So the
business logic can be easily changed without adjusting the RESTful API logic in the con-
troller and routing. It also allows (unit) testing without mocking HTTP requests by directly
testing the services that include all business logic.

5.4.2 CRUD operations utilizing the Repository Pattern

To improve the extendability of the backend, basic ”Create”, ”Read”, ”Update” and ”Delete”
(CRUD) operations of resources are implemented according to the repository pattern. While

5. Design 24

not being one of the design patterns introduced by the Gang of Four, it is a common design
pattern for CRUD operations. The idea of this pattern is having a generic abstraction of
data operations. (Bergman, 2017) In case of the demo facility that means that there is a
generic implementation of a resource controller and resource service that can be applied to
every model that is newly introduced to the system. In case more operations are needed or
a generic implementation does not match with the needs of the model that is going to be
added, the controllers and services can be extended for this specific model or functions can
be overwritten to follow a different logic for a model.

Process

+name: string
+orderBased: boolean

ProcessService

+delete(id: ObjectID): Promise<boolean>

ProcessController

«Interface»
IResourceController

getAll(request: Request, response: Reponse): void
getById(request: Request, response: Reponse): void
store(request: Request, response: Reponse): void
update(request: Request, response: Reponse): void
delete(request: Request, response: Reponse): void

{abastract}
GenericResourceController<T>

#service: IResourceService<T>

+getAll(request: Request, response: Reponse): void
+getById(request: Request, response: Reponse): void
+store(request: Request, response: Reponse): void
+update(request: Request, response: Reponse): void
+delete(request: Request, response: Reponse): void

{abstract}
GenericResourceService<T extends object>

#model: Model<Document>

+getAll(criteria?: object): Promise<T[]>
+getById(id: ObjectID): Promise<T>
+store(object: T): Promise<T>
+update(id: ObjectID, changes: object): Promise<T>
+delete(id): Promise<boolean>

«Interface»
IResourceService<T>

getAll(criteria?: object): Promise<T[]>
getById(id: ObjectID): Promise<T>
store(object: T): Promise<T>
update(id: ObjectID, changes: object): Promise<T>
delete(id): Promise<boolean>

Figure 6: Class Diagram: Repository pattern

Figure 6 shows this design pattern per example for processes. For the service side an in-
terface ”IResourceService” for generic type T with the basic CRUD operations is created.
This interface is extended by a generic implementation of that interface that also takes the
generic type T (that extends object). This ”GenericResourceService” has a model of a Mon-
goose specific type that is responsible for database interaction in the service and defined
while instantiation of the service. For each resource (also referenced to as model) a spe-
cific service is implemented that extends the ”GenericResourceService” with the type of the
resource (in this case of type ”Process”).

5. Design 25

On the controller side also an interface is implemented called ”IResourceController”. This
defines the CRUD operations. This interface is implemented by a generic ”GenericResource-
Controller” of type T, that basically forwards the incoming requests to the responsible ser-
vice. This service is available as an instance in the resource controller. For each resource a
specific controller implementation is created that extends the ”GenericResourceController”
with the specific type of the resource.

As shown in the example this pattern allows introducing new resources/models to the sys-
tem with little work as only special operation for a resource have to be implemented. In the
example in figure 6 only the delete operation of the process resource in ”ProcessService” has
a special implementation that overrides the generic one from the ”GenericResourceService”.
This is the case as a process also has process activities that also need to be deleted when
deleting a process.

5.4.3 Sequence from Request to Response

Figure 7 shows a sequence diagram of a get request of a specific process. After the request
got routed to the corresponding ”ProcessController”, the controller calls the corresponding
method on the server with the data from the requests. The ProcessService then handles
the interaction with the process model that gets the process via a Mongoose method. The
process is then returned as a response.

User

process1:Process:ProcessService:ProcessControllerAppRouter:Router

return(process1)

findOne(id)

getById(id)

getById(request)

Get Process 1

Figure 7: Sequence Diagram: Request sequence with controllers/services separation

5.4.4 Models

All models are defined as a Mongoose schema, Mongoose model and additionally as a Type-
script class. While definition as a Mongoose schema and model enables the database inter-
action and activates schema and validation support for the MongoDB, defining each model

5. Design 26

as a class supports the development process by allowing checks and easier interaction with
object properties.

In Figure 8 the model classes and their relations among each other are shown. Each model
that is currently in the application extends the PersistentModel class as they get assigned
with the properties ” id” and ”createdAt” once stored and retrieved from the database. If
non-persistent models were required in the future, they would not extend this class.

Every model class, that is not in the child part of another composition, belongs to an envi-
ronment. This enables the possibility, to specify multiple environments in the application
that have their own processes, products, storage location etc. so that the demo facility can
be used in the various different scenarios as defined in section 3.1. So for example differ-
ent products and stock locations can be defined for different companies to have data that is
similar to their real WMS.

SimulationActivity

+step: number
+name: string
+instrcutions: string
+ioValue: string
+humanReadableValue: string
+done: boolean
+activityType: string
+lastActivity: boolean
+quantity: number

Simulation

+currentStep: number
+done: boolean
+processName: string
+orderNo: string

Product

+name: string
+itemNo: string

ProcessActivity

+name: string
+instructions: string
+activityType: string
+dataObject: string
+sequenceNumber: number
+position: string
+lastActivity: boolean

Process

+name: string
+orderBased: boolean

OrderPosition

+quantity: number

Order

+orderNo: string

Location

+humanReadableIdentifier: string
+identifier: string

Environment

+name: string

PersistentModel

-_id: ObjectID
-createdAt: Date

1

*

1* 1

*

1
*

1
*

1

1

1
*

1
*

1
*

Figure 8: Class Diagram: Model relations

5. Design 27

5.5 Simulation logic

The following section describes how the data for a simulation is gathered from the prede-
fined environments. It also explains how a simulation is done.

5.5.1 Starting a simulation

When an environment is defined, available processes in this environment can be used for
simulation. Right now this only works with processes that are based on an order (e.g. order
picking). When the simulation is started, the data is collected according to the specifica-
tions of the process activities. The most important properties of the process activity are
”activityType”, ”dataObject”, ”sequenceNumber” and ”position”. The ”activityType” defines
what is done during the simulation and which checks are necessary. Possible values are
”INPUT”, ”OUTPUT” and ”CONFIRM”. While the first two require a ”dataObject” that is
gathered from another model like Product or Location, ”CONFIRM” just requires a con-
firmation without any specific data. The ”dataObject” property can be either ”ORDER”,
”PRODUCT”, ”LOCATION” or ”ANY”, while the last one can be used in combination with
INPUT if the input does not matter for the further simulation of a process. The ”position”
property together with the ”sequenceNumber” specify when the activity takes place during
the simulation and if it only takes place once or multiple times. Possible values for the ”po-
sition” are ”BEFORE LOOP”, ”AFTER LOOP” and ”IN LOOP”. While the first two define
that an activity will only take place once, the ”IN LOOP” value specifies that the activity
will be repeated for every order position. The ”sequenceNumber” then defines the detailed
position of each activity in their respective position scope.

All gathered data from the definitions in the process activities is then copied into ”Simula-
tionActivity” objects and some more data about the process and orders is put into ”Simula-
tion” objects.

This logic is shown in the example in Figure 9 below.

5. Design 28

Start simulation

simulationActivity2: SimulationActivity

step: 2
name: "Scan Location"
instrcutions: "Scan Location id:"
ioValue: "10101010"
humanReadableValue: "Shelf 1"
done: false
activityType: "INPUT"
lastActivity: false
quantity:

Process

name: "Order Picking"
orderBased: true

processActivity2: ProcessActivity

name: "Scan Location"
instructions: "Scan location id:"
activityType: "INPUT"
dataObject: "LOCATION"
sequenceNumber: 2
position: "IN_LOOP"
lastActivity: false

simulation1: Simulation

currentStep: 1
done: false
processName: "Order Picking"
orderNo: "ORDER123"

location1: Location

humanReadableIdentifier: "Shelf 1"
identifier: "10101010"

product1: Product

name: "Pencil"
itemNo: "ITEM123"

orderPosition1: OrderPosition

quantity: 4

order1: Order

orderNo: "ORDER123"

simulationActivity1: SimulationActivity

step: 1
name: "Scan Container"
instrcutions: "Scan container id:"
ioValue: "ANY"
humanReadableValue: ""
done: false
activityType: "INPUT"
lastActivity: false

processActivity1: ProcessActivity

name: "Scan Container"
instructions: "Scan container id:"
activityType: "INPUT"
dataObject: "ANY"
sequenceNumber: 1
position: "BEFORE_LOOP"
lastActivity: false

Figure 9: Simulation logic

In the ”SimulationActivity” objects the data is stored according to the specification in the
”ProcessActivity” objects. The Simulation object has information about the process and
order and the current status of the simulation.

The data is copied to the simulation objects to avoid any interference during a simulation
when someone changes data in an environment.

5. Design 29

5.5.2 Doing a simulation

After a simulation and its respective simulation activities were created, the system is ready
for interaction with information coming from the frontend (and attached wearables) or from
wearables directly to actually simulate a process.

As figure 9 shows, each simulation activity has specific type and may have a specific ”io-
Value”. Depending on the type, the system will await either just a confirmation which will
set an activity to done or if the activity expects an ”ioValue” the system will check this value
against the incoming data and then set the activity to done. Apart from the value, the sys-
tem also checks if the correct activity in the correct order is executed. This repeats for every
simulation activity. The last simulation activity has the property ”lastActivity” set to true
which tells the system to also set the simulation to done.

5.6 Deployment

As the SRS (refer to B) states that the demo facility shall run on macOS and Windows and
shall be set up and start-able by users who do not have an IT background, the application
will be deployed via Docker containers. Containers allow to pack all dependencies and the
execution environment of an application into a self-contained unit so that the application
can be run on any system. While there are multiple container solutions beside Docker,
Docker became the de-facto standard. (Cito et al., 2017).

«volume»
mongodb

«host»
Docker Host

+volume_from

«image»
mongo

«build»
demofacilityfrontend

«build»
demofacilitybackend

«service»
demoFacility

Figure 10: Container structure

Figure 10 shows the deployment diagram of the demo facility application. The host is in

5. Design 30

case of the stationary environment (refer to 5.1) one of the iMac Pros and in case of the
portable environment the MacBook Pro. On this host the demo facility application is run as
one service containing of three containers and a volume for persisting data across recreating
containers. While the containers for the frontend and backend are built before deployment,
for the MongoDB database a prebuilt image is used.

More details can be found in section 6.3.

6. Implementation 31

6 Implementation

This section describes the implementation of the software design.

6.1 Basic Software Design

This section describes the implementation of the repository patterns and model classes.

6.1.1 Controllers and Services

As explained in section 5.4.1 controllers only handle incoming requests and send back re-
sponses while all the business logic is handled by services. The example below in figure 11
shows the controller method called when all instances of a model matching certain criteria
are requested from the backend. The ”getAll”-method gets passed the request and response
parameters which are of specific types introduced by the Express framework. The request
parameter contains all data from the incoming request like query parameters which can be
used as filter criteria (line 7) and the response parameter is used for sending back the re-
sponse. These filter criteria are passed to the ”getAll”-method on the service which then
handles the whole business logic (line 8). The only responsibility of the controller is check-
ing the response of the service for a result (line 9) or an error (line 12) and send back a
matching response for each case.

The service methods are asynchronous sending back Promises so the ”.then and .catch” syn-
tax can be used on the controller side after the Promise is resolved.

6. Implementation 32

1 /**

2 * Returns a list of entity

3 * @param req Request for specific set of entities

4 * @param res Response of specific set of entities

5 */

6 public getAll(req: Request, res: Response): void {
7 const searchCriteria: object = req.query;

8 this.service.getAll(searchCriteria)

9 .then((results) => {
10 new StandardResponse(res, true, 200, results).send();

11 })
12 .catch((err) => {
13 console.error(err);

14 new ErrorResponse(res, false, 500, ’An error occured.’).send();

15 });
16 }

Figure 11: Example resource controller method

The business logic for querying the instances of the resource from the database is found
in the services. As the example in figure 11 calls the ”getAll”-method of the service, this
example is shown below.

1 public async getAll(criteria?: object): Promise<T[]> {
2 const documents: Document[] = await this.model.find(criteria).exec();

3 const results: object[] = [];

4

5 for (const document of documents) {
6 results.push(document.toObject());

7 }
8

9 return results as T[];

10 }

Figure 12: Example service method

The ”getAll”-method is declared as asynchronous and takes the search criteria as parameter
und returns a Promise containing an array of a generic type T. First the method queries all
matching Mongoose documents from the database. This is done via a method provided by
the Mongoose model. As this method also returns a Promise the ”await” syntax can be used
to handle asynchronous operations like synchronous operations. To avoid working with
Mongoose or MongoDB specific objects through out the backend, the Mongoose documents
are transformed into objects and then an array of plain Typescript objects is returned from

6. Implementation 33

the method.

6.1.2 Repository pattern

As mentioned in section 5.4.2 the repository pattern is used for the CRUD functionality of
the backend. This pattern can already be partly seen in figures 11 and 12 as a generic service
is called and the service returns a generic array of objects of type T.

The repository pattern is implemented using the interfaces ”IResourceController” and ”IRe-
sourceService” which specify which methods are needed for all basic CRUD operations and
what parameters and return types are needed. These two interfaces are then implemented
by the ”GenericResourceController” on Controller side and the ”GenericResourceService”
on service side. Figure 13 shows an excerpt from the ”GenericResourceController”.

1 export abstract class GenericResourceController <T> implements

IResourceController {
2

3 public constructor(protected service: IResourceService<T>) { }
4

5 public getAll(req: Request, res: Response): void {
6 this.service.getAll(searchCriteria) [...]

7

8 [...]

9

10 }

Figure 13: Code sample: GenericResourceController

The generic controller has an instance of a generic service implementation used for querying
the database that is set during instantiation of the controller. So it can be reused for different
models. This generic service is shown in figure 14 below.

6. Implementation 34

1 export abstract class GenericResourceService <T extends object> implements

IResourceService <T> {
2

3 public constructor(protected model: Model<Document>) { }
4

5 public async getAll(criteria?: object): Promise<T[]> {
6

7 [...]

8

9 return results as T[];

10 }

Figure 14: Code sample: GenericResourceService

For example purposes this approach is shown for adding the resource of process activities
to the system. Therefore the ”ProcessActivity” model, the ”ProcessActivityController” and
”ProcessActivityService” have to be created. As the process activities do not need any further
methods than those defined in the generic implementations, adding this resource does not
require much work.

1 export class ProcessActivity extends PersistentModel {
2

3 public constructor(

4 public name: string,

5 [...]

6) {
7 super();

8 }
9

10 export const ProcessActivitySchema = new Schema({
11 name: {
12 type: String,

13 required: true,

14 index: { unique: true } ,
15 } ,
16 [...]

17 });
18 }
19

20 export const ProcessActivities = model(’ProcessActivity’,

ProcessActivitySchema);

Figure 15: ProcessActivity model

6. Implementation 35

Figure 15 shows the model class for the process activity. It defines a regular Typescript
class (lines 3-8) and a Schema for the Mongoose database driver (lines 10-18). In line 20 a
Mongoose model is exported that is used in the service class to query from the database.

1 import { ProcessActivity } from ’../../models/ProcessActivity ’;

2 import { processActivityService } from ’../../services/resources/

ProcessActivityService ’;

3 import { GenericResourceController } from ’./ResourceController ’;

4

5 export class ProcessActivityController extends GenericResourceController <

ProcessActivity> { }
6

7 export const processActivityController: ProcessActivityController = new

ProcessActivityController(processActivityService);

Figure 16: ProcessActivityController

The required controller for process activities is shown in figure 16. This class extends the
”GenericResourceController” as type ”ProcessActivity” so that the generic implementation
can be used with process activities (line 5). An instance of this controller is exported and the
matching service is set as the parameter (line 7).

1 import { ProcessActivities, ProcessActivity } from ’../../models/

ProcessActivity ’;

2 import { GenericResourceService } from ’./GenericResourceService ’;

3

4 export class ProcessActivityService extends GenericResourceService <

ProcessActivity> { }
5

6 export const processActivityService = new ProcessActivityService(

ProcessActivities);

Figure 17: ProcessActivityService

Figure 17 shows the service used for process activities that is set as the parameter in the con-
troller class. As in the controller class the ”ProcessActivityService” just extends the ”Gener-
icResourceService” of type ”ProcessActivity” which enables the usage of the generic imple-
mentations (line 4). An instance of this service is exported and the Mongoose model is set
as parameter (line 6).

Adding a resource that does not require any additional methods so only takes about 13 lines
of code not considering the model itself.

6. Implementation 36

6.2 Simulation

This section describes the implementation of the simulation creation and how a simulation
is done.

6.2.1 Starting a Simulation

As described in section 5.5.1 a Simulation consists of a ”Simulation” object that has sev-
eral ”SimulationActivity” objects. These ”SimulationActivity” objects have ”activityType”,
”dataObject”, ”sequenceNumber” and ”position” properties that define what is done in an
activity and when and where in the sequence the activities occur.

To achieve that the code of the ”startSimulation”-method is called upon request in the ”Run-
ActivityService”.

In lines 3-6 it checks if there is already a running simulation for exactly that process and
order. If this is the case instead of creating a new simulation the existing one is returned.

If there is no simulation running it will retrieve all necessary data about the process and
order (line 9) and create a simulation object by copying the needed data over (lines 12-19).
After the simulation is stored in the database which assigns the simulation with a unique
ID the simulation activities are created in a separate method and assigned to the simulation
(line 30). After the simulation and simulation activities are created they are returned in line
32.

6. Implementation 37

1 public async startSimulation(processId: ObjectID, orderId: ObjectID):

Promise<object> {
2

3 const existingSimulation: Simulation[] = await simulationService.getAll

({ process: processId, order: orderId });
4 if (existingSimulation.length > 0) {
5 return await this.getSimulationData(processId, orderId);

6 }
7

8 // Set global variables

9 await this.retrieveData(processId, orderId);

10

11 // Copy data from process and order to simulation and store simulation

12 const simulation: Simulation = {
13 process: this.process._id,

14 order: this.order._id,

15 currentStep: 1,

16 done: false,

17 processName: this.process.name,

18 orderNo: this.order.orderNo,

19 } ;
20

21 let storedSimulation: Simulation;

22

23 try {
24 storedSimulation = await simulationService.store(simulation);

25 } catch (err) {
26 console.error(’Could not create simulation: ’ + err);

27 return null;

28 }
29

30 await this.createSimulationActivities(storedSimulation._id);

31

32 return await this.getSimulationData(processId, orderId);

33 }

Figure 18: ”startSimulation”-method

The ”createSimulationActivities”-method in line 30 contains most of the business logic. As
shown in figure 19 it mostly contains of multiple for-loops that store the activities in the right
order to the database. This right order is achieved by using switch cases and if statements
that respond to the ”activityType”, ”dataObject” and ”position” properties of the process
activities as mentioned above.

6. Implementation 38

An excerpt of this method is shown in figure 19 below.

1 let stepCounter: number = 1;

2

3 // Creates and stores all simulation activities in right order that

belong before the loop

4 for (const activity of this.activities) {
5 if (activity.position === ’BEFORE_LOOP ’) {
6 const simulationActivity: SimulationActivity = {
7 simulation: simulationId,

8 step: stepCounter,

9 name: activity.name,

10 instructions: activity.instructions,

11 [...]

12 } ;
13

14 switch(activity.dataObject) {
15 case ’ORDER’: {
16 simulationActivity.ioValue = this.order.orderNo;

17 simulationActivity.humanReadableValue = this.order.orderNo;

18 break;

19 }
20 default: {
21 [...]

22 break;

23 }
24 stepCounter++;

25 await simulationActivityService.store(simulationActivity);

26 }

Figure 19: ”createSimulationActivities”-method

This excerpt shows the first for loop that is responsible for the simulation activities that
are positioned in front of the loop (compare to section 6.2.1). It first checks if the activity
is one of those that belong before the loop (line 5) and then creates each of the simulation
activities by copying over information from the process activities (lines 6-12). Depending
on the ”dataObject” type the expected input value of the activity is added to the simulation
activity when applicable (lines 14-23) and finally the activity is saved to the database.

6.2.2 Doing a Simulation

Depending on the ”activityType” property of the simulation activity, either a specific value,
any value or just a confirmation is expected for completing a simulation activity. For ex-

6. Implementation 39

ample the code in figure X checks if the activity the request is for is the correct step in the
process at that time and then checks if the provided ”ioValue” of the request matches with
the ”ioValue” of the simulation activity.

1 if (simulationActivity.step === simulation.currentStep &&

simulationActivity.ioValue === ioValue) {
2 simulationActivityService.update(simulationActivity._id, { done: true }

);

3 simulationService.update(simulation._id, { currentStep: simulation.

currentStep + 1 });
4 const updatedSimulationActivity: SimulationActivity =

5 await simulationActivityService.update(simulationActivity._id, { done

: true });
6 const updatedSimulation: Simulation =

7 await simulationService.update(simulation._id, { currentStep:

simulation.currentStep + 1 });
8

9 const result: object = {
10 simulation: updatedSimulation,

11 simulationActivity: updatedSimulationActivity,

12 } ;
13

14 return result;

15 }

Figure 20: ”doActivity”-method

6.3 Deployment

As described in section 5.6 the demo facility is deployed via docker containers. As multiple
containers are needed for the backend, frontend and database, Docker Compose is used.
Docker Compose allows to define services consisting of multiple containers in one file and
to spin them up via one single command.

While the MongoDB is provided as an image from the Docker HUB, the containers for the
backend and frontend are custom-built and defined in two Dockerfiles which are briefly
explained below.

6. Implementation 40

1 FROM node:11

2 WORKDIR /usr/src/app

3 COPY package*.json ./

4 RUN npm install

5 COPY . .

6 EXPOSE 3000

7 CMD ["npm", "start"]

Figure 21: Dockerfile of the backend

For the backend the (shortened) Dockerfile is shown in figure 21.

Line 1 specifies that the container is derived from the node image in version 11. From line
2 to 5 the directory of the application inside the container is specified, the package.json
containing all required node dependencies is copied to the container and the dependencies
are installed inside the container. Then the source code of the backend application is copied
to the container. In line 6 the port where the application is listening on is opened to the
outside and in line 7 the application is transpiled and started.

For the frontend application based on Angular 7 a more complex Dockerfile is needed. This
Dockerfile (shortened) is shown in figure 22.

1 FROM node:11 as build-stage

2 RUN apt-get update && apt-get install -yq [...]

3 WORKDIR /usr/src/app

4 [..]

5 COPY package*.json /app/

6 RUN npm install

7 COPY ./ /usr/src/app/

8 ARG configuration=production

9 RUN npm run build -- --output-path=./dist/out --configuration

$configuration

10

11 FROM nginx:1.15

12 COPY --from=build-stage /usr/src/app/dist/out/ /usr/share/nginx/html

13 COPY ./docker/nginx-vhost.conf /etc/nginx/conf.d/default.conf

Figure 22: Dockerfile of the frontend

In this Dockerfile a two-stage approach is used. This enables to build the Angular applica-
tion in an intermediate container that is deleted afterwards and copy the built version of the
Angular application to a container that is running an nginx webserver serving the Angular
application. For this approach in line 1 the base image for the ”build-stage” of the container

6. Implementation 41

creation is defined. From line 2 to 9 the required dependencies are installed on image and
node base and later on the Angular application is built using the production configuration.

As a built version of an Angular application can be served like a static HTML page, the final
container is built on top of an nginx image with custom configuration to serve the Angular
application (lines 11 to 13).

As mentioned before Docker Compose is used to create and start all containers and the
volume needed for the demo facility. For this a file called ”docker-compose.yml” is needed,
that defines everything needed.

Figure 23 shows this file. Line 1 defines which version of Docker Compose is used and lines
3-19 then define the services (containers) needed for the demo facility. While the frontend
and backend containers need to build (lines 5 and 9), the database service uses a prebuilt
”mongo” image. The files also defines which ports are open and to which port of the host
they are bound (lines 7, 11 and 17). In lines 12-13 is defined that the backend starts after
the database container is started as the backend needs a running database to work properly.
In lines 18-21 the volume of the database container is defined as data shall not be lost after
recreation of the database container.

1 version: ’3’

2

3 services:

4 frontend:

5 build: demofacilityfrontend

6 ports:

7 - "80:80"

8 backend:

9 build: demofacilitybackend

10 ports:

11 - "3000:3000"

12 depends_on:

13 - db

14 db:

15 image: mongo

16 ports:

17 - "127.0.0.1:27017:27017"

18 volumes:

19 - mongodb:/data/db

20 volumes:

21 mongodb:

Figure 23: Docker Compose file

6. Implementation 42

6.4 Connecting the Demo Facility and Wearables

After having implemented the software part of the demo facility one important next step is
connecting the wearables to the demo facility. There are multiple ways to do so. As described
in section 5.2 the Demo Facility is designed to connect to wearables either via the frontend
or directly via the REST API. For the time of writing this report, only the first option is
considered.

Connecting a wearable to the Demo Facility via the frontend means, that the frontend is
opened in the web browser of one of the clients and the wearable is connected to this client.
According to table 4 this can either be done via Bluetooth or USB.

Another way of connecting a wearable to the frontend is by running the frontend on the
Zebra arm terminal and connecting the wearable via bluetooth to the terminal. As the Zebra
arm terminal runs a version of Android it is possible to open the frontend in the web browser
without further configuration. As the frontend is responsive (refer to figure 24) this provides
a usable experience to the user.

Figure 24: Screenshot: Frontend running on mobile device

7. Conclusion 43

7 Conclusion

This report presented the results of the bachelor thesis project of creating and designing a
demo facility for wearables in logistics for the LOGwear project. The goal of this project
is to build a hardware and software environment that can be used for simulating different
logistics processes using wearables. For this a hardware and software platform needed to be
created. In scope of the project in terms of the bachelor thesis was creating a minimum viable
product that included the hardware as well as a software solution that allows simulating the
order picking process with at least one wearable. Furthermore the software solution shall
have extendibility in mind for future use with other processes and wearables.

This goal has been reached as hardware was chosen and ordered and a ”fake”-WMS was
developed. This ”fake”-WMS allows creation of order-based processes and at least different
variations of the order picking process can be simulated. Moreover the wearables can be
be connected to the client which allows simulation using three wearables of the LOGwear
project. The system is also prepared for connecting other wearables to the system by pro-
viding different interfaces like WIFI and Bluetooth via the clients and network equipment
as well as a REST API to directly connect wearables to the backend.

Although the goal was reached during the execution of the project there was a lot of room
for improvement. Originally the intention was to use an existing WMS for the software side
of the demo facility instead of creating a custom ”fake”-WMS. For this particular reason a
lot of time was used for research to find a suitable WMS for the demo facility. The research
showed that the WMS market is very complex and diverse. Also assessing the candidates
against the criteria was difficult as most WMS vendors do not provide a lot of information
about their WMS without trying them out. So the research part of the project turned out to
be very time consuming without finding a proper candidate. If less time had been invested
for research, a more advanced custom implementation would have been possible in time of
the project.

Another issue that cost a lot of time in the beginning was choosing and ordering the hard-
ware for the demo facility. This had to be done during the analysis phase and hardware
needed to be ordered before the analysis was completed. That had to do with time con-
straints set by the customer LOGwear, as the budget of the project needed to be used before
a certain date.

For future use the project can be extended in a number of ways. First of all, more wearables
can be added to the current implementation. This can either be done by connecting them
directly to the backend via the REST API or by using other key-board emulating wearables
to the client running the frontend. Furthermore, the current logic for order-based processes
can be extended to make adding other processes than the order picking to the system as
they may require more/different data than the order picking process. Lastly another logic

7. Conclusion 44

for processes that are not order-based can be added to the system. This enables simulation
of processes like the putaway process already modelled for this project.

References 45

References

About. (N.d.). OpenBoxes. [online] Available at: https://openboxes.com/about/ [Accessed
Nov. 8, 2018].

Aghi, R., S. Mehta, R. Chauhan, S. Chaudhary, and N. Bohra (2015). “A comprehensive com-
parison of SQL and MongoDB databases”. In: International Journal of Scientific and Research
Publications 5.2, pp. 228–229.

Bergman, P.-E. (2017). Repository Design Pattern. [online] Available at: https://medium.
com/@pererikbergman/repository-design-pattern-e28c0f3e4a30 [Accessed Dec. 9,
2018].

Bierman, G., M. Abadi, and M. Torgersen (2014). “Understanding TypeScript”. In: ECOOP
2014 – Object-Oriented Programming. Ed. by R. Jones. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 257–281. isbn: 978-3-662-44202-9.

Bradner, S. (Mar. 1997). Key words for use in RFCs to Indicate Requirement Levels. RFC 2119.
Heise Netze, p. 1.

Businessobjekt. (N.d.). Nuclos Wiki. [online] Available at: https : / / wiki . nuclos . de /
display/Konfiguration/Businessobjekt [Accessed Nov. 8, 2018].

Büyüközkan, G., M. Güler, and D. Uztürk (2016). “Selection of wearable glasses in the lo-
gistics sector”. In: Proceedings from the 14th international logistics and supply chain congress,
p. 377.

Cito, J., G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C. Gall (2017). “An
empirical analysis of the Docker container ecosystem on GitHub”. In: Mining Software
Repositories (MSR), 2017 IEEE/ACM 14th International Conference on. IEEE, pp. 323–333.

Code Linting in JavaScript. (N.d.). freeCodeCamp. [online] Available at: https://guide.
freecodecamp.org/javascript/code-linting-in-javascript/.

Das Project. (2018). LOGwear. [online] Available at: https://logwear.eu/project [Ac-
cessed Sept. 8, 2018].

Dayley, B. (2014). “Node. js, MongoDB, and AngularJS web development”. In: Addison-
Wesley Professional. Chap. Features of MongoDB, p. 9.

Features. (N.d.). OpenBoxes. [online] Available at: https://openboxes.com/features/
[Accessed Nov. 8, 2018].

Getting Started - Business Users. (2018). The Apache OFBiz Project. [online] Available at:
https://ofbiz.apache.org/business-users.html [Accessed Nov. 8, 2018].

Hompel, M. and T. Schmidt (2007). Warehouse Management: Automation and Organisation of
Warehouse and Order Picking Systems. Springer Berlin Heidelberg. isbn: 9783540352204.

https://openboxes.com/about/
https://medium.com/@pererikbergman/repository-design-pattern-e28c0f3e4a30
https://medium.com/@pererikbergman/repository-design-pattern-e28c0f3e4a30
https://wiki.nuclos.de/display/Konfiguration/Businessobjekt
https://wiki.nuclos.de/display/Konfiguration/Businessobjekt
https://guide.freecodecamp.org/javascript/code-linting-in-javascript/
https://guide.freecodecamp.org/javascript/code-linting-in-javascript/
https://logwear.eu/project
https://openboxes.com/features/
https://ofbiz.apache.org/business-users.html

References 46

How to set up the metasfresh stack using Docker?. (N.d.). Metasfresh Docs. [online] Available
at: http://docs.metasfresh.org/installation_collection/EN/How_do_I_setup_
the_metasfresh_stack_using_Docker.html [Accessed Nov. 8, 2018].

Installation. (N.d.). OpenBoxes Docs. [online] Available at: http://docs.openboxes.com/
en/develop/installation/ [Accessed Nov. 8, 2018].

Jest. (N.d.). Jest. [online] Available at: https://jestjs.io/.

Jones, D. E. and B. Jugl (2018). Demo and Test Setup Guide. OFBiz Project Open Wiki. [online]
Available at: https://cwiki.apache.org/confluence/display/OFBIZ/Demo+and+
Test+Setup+Guide [Accessed Nov. 8, 2018].

Lei, K., Y. Ma, and Z. Tan (2014). “Performance comparison and evaluation of web develop-
ment technologies in php, python, and node. js”. In: 2014 IEEE 17th International Confer-
ence on Computational Science and Engineering (CSE). IEEE, pp. 661–668.

OFBiz Features. (2016). OFBiz Project Open Wiki. [online] Available at: https://cwiki.
apache.org/confluence/display/OFBIZ/OFBiz+Features [Accessed Nov. 8, 2018].

Produkt Highlights. (N.d.). Metasfresh. [online] Available at: https://metasfresh.com/en/
erp-product-highlights/ [Accessed Nov. 8, 2018].

REST API Guide. (N.d.). OpenBoxes Docs. [online] Available at: http://docs.openboxes.
com/en/develop/api-guide/ [Accessed Nov. 8, 2018].

Rodriguez, C., M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali, and G. Percannella
(2016). “REST APIs: a large-scale analysis of compliance with principles and best prac-
tices”. In: International Conference on Web Engineering. Springer, pp. 21–39.

Schneider, G. and J. P. Winters (2001). “Applying use cases: a practical guide”. In: Pearson
Education. Chap. Getting started, p. 31.

Setup Authorization Token for accessing REST API. (N.d.). Metasfresh Docs. [online] Available
at: http://docs.metasfresh.org/setup/Setup_REST_API_Token_Authorization.
html [Accessed Nov. 8, 2018].

Statusmodell. (N.d.). Nuclos Wiki. [online] Available at: https://wiki.nuclos.de/display/
Konfiguration/Statusmodell [Accessed Nov. 8, 2018].

WebUI Howtos and Tutorials. (N.d.). Metasfresh Docs. [online] Available at: http://docs.
metasfresh.org/pages/webui/index_en [Accessed Nov. 8, 2018].

http://docs.metasfresh.org/installation_collection/EN/How_do_I_setup_the_metasfresh_stack_using_Docker.html
http://docs.metasfresh.org/installation_collection/EN/How_do_I_setup_the_metasfresh_stack_using_Docker.html
http://docs.openboxes.com/en/develop/installation/
http://docs.openboxes.com/en/develop/installation/
https://jestjs.io/
https://cwiki.apache.org/confluence/display/OFBIZ/Demo+and+Test+Setup+Guide
https://cwiki.apache.org/confluence/display/OFBIZ/Demo+and+Test+Setup+Guide
https://cwiki.apache.org/confluence/display/OFBIZ/OFBiz+Features
https://cwiki.apache.org/confluence/display/OFBIZ/OFBiz+Features
https://metasfresh.com/en/erp-product-highlights/
https://metasfresh.com/en/erp-product-highlights/
http://docs.openboxes.com/en/develop/api-guide/
http://docs.openboxes.com/en/develop/api-guide/
http://docs.metasfresh.org/setup/Setup_REST_API_Token_Authorization.html
http://docs.metasfresh.org/setup/Setup_REST_API_Token_Authorization.html
https://wiki.nuclos.de/display/Konfiguration/Statusmodell
https://wiki.nuclos.de/display/Konfiguration/Statusmodell
http://docs.metasfresh.org/pages/webui/index_en
http://docs.metasfresh.org/pages/webui/index_en

A. Use Cases 47

A Use Cases

List Processes

Create Process
Activities

Create Process

Create Environment

Do a simulation

Start simulation

Administrator

User

Figure 25: Use Case Diagram

Use Case Create environment

Code UC-1

Requirement FR-12

Actor Administrator

Description The administrator creates an environment.

Precondition(s) • The user is authenticated and has the administrator role.

Scenario 1. User opens the administration interface in the frontend.
2. User navigates to the environment administration page.
3. User clicks on add environment
4. User fills in name of environment
5. User saves environment

Extension

Result Environment is added to the system

Table 8: Use Case: Create environment

A. Use Cases 48

Use Case List processes

Code UC-2

Requirement FR-1

Actor Administrator

Description The administrator lists existing processes.

Precondition(s) • The user is authenticated and has the administrator role.

Scenario 1. User opens the administration interface in the frontend.
2. User navigates to the process administration page.

Extension

Result System lists existing processes.

Table 9: Use Case: List processes

Use Case Create process

Code UC-3

Requirement FR-1

Actor Administrator

Description The administrator creates a demo process in the demo environ-
ment.

Precondition(s) • The user is authenticated and has the administrator role.

Scenario 1. User opens the administration interface in the frontend.
2. User navigates to the process administration page.
3. User clicks on ”Add process”
4. User enters information in the provided form.
5. User saves process.
6. System checks if data is valid.

Extension 4. User imports data via xls/csv file.

Result Process is added to the system.

Table 10: Use Case: Create process

A. Use Cases 49

Use Case Create Process Activity

Code UC-4

Requirement FR-1

Actor Administrator

Description The administrator creates activities for a process.

Precondition(s) • The user is authenticated and has the administrator role
• At least one process exists.

Scenario 1. User opens the administration interface in the frontend.
2. User navigates to the process administration page.
3. User opens list of existing processes.
4. User opens one of the processes.
5. User clicks ”Create activity”.
6. User chooses type of activity.
7. User enters data.
8. User saves activity.
9. System checks if provided data is valid.

Extension

Result Process activity is created.

Table 11: Use Case: Create process activity

Use Case Start simulation (order-based

Code UC-5

Requirement FR-7, FR-13, FR-14

Actor User

Description The user starts an order-based simulation.

Precondition(s) • At least one process exists.
• At least one order exists.

Scenario 1. User opens the simulation interface in the frontend.
2. User navigates to the simulation page.
3. User chooses process and order to work on.
4. User clicks ”start simulation”.

Extension

Result Simulation based on order and process is created.

Table 12: Use Case: Start simulation

A. Use Cases 50

Use Case Do a simulation

Code UC-6

Requirement FR-7, FR-13, FR-14

Actor User

Description User does a simulation.

Precondition(s) • Simulation for process (and order) is started

Scenario 1. System prompts for action by the user.
2. User does action (e.g. confirming step, providing input)
3. System prompts for next action by the user.
4. Steps 1 to 3 are repeated till all actions are done.

Extension

Result Process simulation is finished.

Table 13: Use Case: Do a Simulation

B. Software Requirements Specifications 51

B Software Requirements Specifications

Software Requirements Specifications

LOGWear

Author: Marius Freyer

Version: 0.7

Venlo, November 20, 2018

B. Software Requirements Specifications 52

ii

Contents

1 Introduction 2

1.1 Purpose . 2

1.2 Project scope . 2

1.3 Overview . 2

2 General Description 3

2.1 Product Perspective . 3

2.2 Product Functions . 3

2.3 User Characteristics . 3

2.4 General Constraints . 4

2.5 Assumptions & Dependencies . 5

2.5.1 Assumptions . 5

2.5.2 Dependencies . 5

3 Specific Requirements 6

3.1 Functional Requirements . 6

3.2 Non-functional Requirements . 7

3.2.1 External Interface Requirements . 7

3.2.2 Performance Requirements . 7

3.2.3 Security Requirements . 7

3.2.4 Maintenance Requirements . 8

3.2.5 Design Constraints . 9

3.2.6 Software System Attributes . 10

3.2.7 Other Requirements . 10

B. Software Requirements Specifications 53

Contents 1

Version control

Version Date Changes

0.1 26/09/2018 Initial version

0.2 27/09/2018 Implemented more details after second requirements meeting

with customer, added several requirements

0.3 03/10/2018 Added requirements

0.4 04/10/2018 Added requirements, modifı́ed structure

0.5 12/10/2018 Added functional requirements

0.6 14/11/2018 Improved structure of specific requirements

0.7 20/11/2018 Deleted obsolete functional requirements

B. Software Requirements Specifications 54

1. Introduction 2

1 Introduction

1.1 Purpose

This software requirements specification document describes all requirements of the demo

facility of the LOGwear project. It is intended to be read and agreed on by all involved

project members and the customer of the demo facility.

1.2 Project scope

This document describes the requirements for the whole demo facility. This includes re-

quirements on the software system mimicking a warehouse management system, required

software for connecting different wearables to the system as well as the presentation layer of

the demo facility (visualization, frontend, hardware, etc.).

1.3 Overview

For the structure this document follows IEEE Std. 830-1998 for writing software require-

ment specification.

The second chapter gives a more general overview over the demo facility while the third

chapter lists the specific functional and non-functional requirements of the demo facility.

B. Software Requirements Specifications 55

2. General Description 3

2 General Description

2.1 Product Perspective

The demo facility is part of the LOGwear project which also consists of a knowledge base

and pilot projects with wearables at various companies. The purpose of the demo facility

is giving companies an environment where they can test different wearables in different

logistics processes.

The product consists of three parts: The software system which holds the logic of the pro-

cesses and is responsible for the visual presentation of the demo processes as well as holding

the data required for these processes (in an offline available database), the physical hardware

workstation (PC, mouse, keyboard, etc.) and the wearables. Each of the three system parts

must interact/communicate with each other.

2.2 Product Functions

The demo facility will be used to give first hand experience to companies that are interested

in usage of wearables in their logistics processes.

The demo facility will provide a software based system that represents a basic warehouse

management system supporting various common processes in the logistics department of

small and medium sized companies. Moreover the demo facility consists of a physical en-

vironment featuring two stationary workstation, one mobile workstation and a small demo

warehouse in form of boxes and shelves supporting the processes.

2.3 User Characteristics

There are three different kinds of users. The administrators of the demo facility. They will

be responsible for configuring and implementing the software system, selecting and setting

up the hardware and developing and maintaining the interfaces of the wearables.

The second group are the users who use the demo facility for giving presentations and work-

shops. These users are able to modify the data in the system, start the demo facility and reset

it to the original state after a workshop or presentation is finished.

The third group are the users following workshops using the demo facility. These people

are only allowed to use the presentation layer of the demo facility and are not permitted to

B. Software Requirements Specifications 56

2. General Description 4

modify data except by following predefined processes.

2.4 General Constraints

The demo facility will mostly be used at Fontys in Venlo but should also be partly portable

for demo purposes at companies. In both cases the demo facility will have no fixed place,

it should not be dependent on external resources except power. Therefore the demo facility

shall be fully usable without an internet connection and the software element of the demo

facility shall be easily deployable on other computers.

B. Software Requirements Specifications 57

2. General Description 5

2.5 Assumptions & Dependencies

2.5.1 Assumptions

• The latest available stable version of the operation system is used

• Administrators and users are used to computers

2.5.2 Dependencies

• Access to electricity (230 V/50 Hz AC)

B. Software Requirements Specifications 58

3. Specific Requirements 6

3 Specific Requirements

3.1 Functional Requirements

Identifier Priority Description

FR-1 <Shall> The frontend shall provide a way to add processes to the system

and modify processes of the system.

FR-1.1 <Shall> The frontend shall provide a way to import processes via xls/xlsx

files to the system.

FR-1.2 <Shall> The frontend shall provide a way to import processes via csv files

to the system.

FR-2 <Shall> The system shall provide a view of what the users see through

the wearables (e.g. Hololens)

FR-3 <Shall> The backend shall provide an interface for external access (e.g.

API).

FR-4 <Shall> The frontend shall provide an overview about the current process

and its state visually

FR-5 <Shall> The frontend shall provide a way to choose between multiple

wearables.

FR-6 <Should> The frontend should be able to communicate with multiple wear-

ables at the same time.

FR-7 <Shall> The frontend shall provide an option to select the process going

to work on.

FR-8 <Shall> The frontend shall provide an option to select wearable(s) for the

process going to work on.

FR-11 <Shall> The system shall provide a way to sign in users.

FR-12 <Shall> The system shall provide a way use company specific data in the

implemented processes.

FR-13 <Shall> The system shall implement the order picking process.

FR-14 <Shall> The system shall implement the warehousing process.

B. Software Requirements Specifications 59

3. Specific Requirements 7

3.2 Non-functional Requirements

3.2.1 External Interface Requirements

Identifier Priority Description

IR-1 <Shall> The client shall be able to communicate via bluetooth in version

4.0+.

IR-1.1 <Shall> Communication via bluetooth shall be possible over a range of at

least 5 meters.

IR-2 <Shall> The client shall communicate via WIFI (IEEE 802.11ac).

IR-2.1 <Shall> Communication via WIFI shall be possible over a range of at least

20 meters.

IR-3 <Shall> The client shall have USB interfaces (USB 3.1)

3.2.2 Performance Requirements

Identifier Priority Description

PR-1 <Shall> Requests to the backend shall be answered within maximum one

second.

PR-2 <Shall> The demo facility shall be usable by up to two users at the same

time.

3.2.3 Security Requirements

Identifier Priority Description

SR-1 <Shall> The demo facility shall define different user roles.

SR-1.1 <Shall> The demo facility shall provide a user role administrator that is

allowed to change processes and data.

SR-1.2 <Shall> The demo facility shall provide a user role user that is allowed to

use the predefined processes.

B. Software Requirements Specifications 60

3. Specific Requirements 8

3.2.4 Maintenance Requirements

Identifier Priority Description

MR-1 <Shall> The data in the system shall be configurable by users with the

administrator role without an IT background.

MR-2 <Should> The processes in the system should be configurable by users with

the administrator role without an IT background.

MR-3 <Shall> The data in the system shall be resettable to the origin state by all

users without an IT background.

MR-4 <Shall> The demo facility shall be start-able/runnable by users with ad-

ministrator role without an IT background.

MR-5 <Shall> There shall always be a production-ready version of the backend

and frontend which can be deployed on any machine as a backup

solution.

MR-5.1 <Shall> The production-ready version shall be available securely online

(e.g. in a repository).

B. Software Requirements Specifications 61

3. Specific Requirements 9

3.2.5 Design Constraints

Identifier Priority Description

DC-1 <Shall> The demo facility shall be fully functional without requiring an

internet connection/offline.

DC-2 <Shall> The components of the demo facility shall be connected via an

own local network.

DC-3 <Shall> The frontend shall run on macOS 10.14 and newer.

DC-4 <Shall> The frontend shall run on Windows 10 version 1803 and newer.

DC-5 <Should> The frontend should run on Ubuntu 18.04 and newer.

DC-6 <Shall> The backend shall run on macOS 10.14 and newer.

DC-7 <Shall> The backend shall run on Windows 10 version 1803 and newer.

DC-8 <Should> The backend should run on Ubuntu 18.04 and newer.

DC-9 <Shall> The demo facility shall consist of a stationary environment.

DC-9.1 <Shall> The stationary demo facility shall consists of two independent

clients.

DC-9.2 <Shall> The two clients shall have big high-quality and high-resolution

screens as they shall be used to display a live stream of what users

see through wearables in real-time.

DC-9.3 <Shall> The two clients shall be usable for (software) development for

the demo facility (this includes also development with the Unity

Engine for the Microsoft Hololens)

DC-9.4 <Shall> The two clients should connect to the same software system.

DC-10 <Shall> The demo facility shall consist of a portable environment.

DC-10.1 <Shall> The portable environment shall consist of a notebook running

both backend and client parts of the application.

DC-10.2 <Shall> The notebook of the portable environment shall also be usable

for development (this includes also development with the Unity

Engine for the Microsoft Hololens)

DC-10.3 <Shall> The portable environment shall consist of a low range beamer for

visual presentation.

DC-10.4 <Should> The portable environment should consist of miniaturized items

(easily portable small shelves/boxes, etc.)

DC-11 <Shall> The demo facility shall have as less wired connections as possible

(e.g. wireless keyboard, mouse, All-in-One PC).

B. Software Requirements Specifications 62

3. Specific Requirements 10

3.2.6 Software System Attributes

Identifier Priority Description

AR-1 <Shall> The demo facility shall be ready to be started at any time without

requiring setup and configuration.

3.2.7 Other Requirements

Identifier Priority Description

OR-1 <Shall> The demo facility shall be technically documented.

OR-1.1 <Shall> The demo facility shall have a configuration management plan

including all external dependencies.

OR-1.2 <Shall> The demo facility shall have a handover document describing

how further development can to be done.

OR-4 <Shall> The demo facility shall have an enduser documentation.

OR-5 <Should> The mobile demo facility should be transportable in one bag.

OR-6 <Shall> The maximum price of the demo facility solution shall not exceed

20 000 e.

C. Mockups 63

C Mockups

Figure 26: Mockup: Create Environment

C. Mockups 64

Figure 27: Mockup: Create Process

C. Mockups 65

Figure 28: Mockup: Edit Process/Create Process Activities

C. Mockups 66

Figure 29: Mockup: List Processes

C. Mockups 67

Figure 30: Mockup: Simulation View

D. Logistics Processes 68

D Logistics Processes

Figure 31: Process: Order Picking

Figure 32: Process: Putaway

E. Software Design 69

E Software Design

SimulationActivity

+step: number
+name: string
+instrcutions: string
+ioValue: string
+humanReadableValue: string
+done: boolean
+activityType: string
+lastActivity: boolean
+quantity: number

Simulation

+currentStep: number
+done: boolean
+processName: string
+orderNo: string

Product

+name: string
+itemNo: string

ProcessActivity

+name: string
+instructions: string
+activityType: string
+dataObject: string
+sequenceNumber: number
+position: string
+lastActivity: boolean

Process

+name: string
+orderBased: boolean

OrderPosition

+quantity: number

Order

+orderNo: string

Location

+humanReadableIdentifier: string
+identifier: string

Environment

+name: string

RunSimulationService

+getSimulationData(processId: ObjectID, orderId: ObjectID)
+startSimulation(processId: ObjectID, orderId: ObjectID)
+resetSimulation(processId: ObjectID, orderId: ObjectID)
+deleteSimulation(processId: ObjectID, orderId: ObjectID)
+doActivity(simulationActivityId: ObjectID)

SimulationController

+startSimulation(request:Request, response: Response): void
+resetSimulation(request:Request, response: Response): void
+deleteSimulation(request:Request, response: Response): void
+doActivity(request:Request, response: Response): void

SimulationService

+delete(id: ObjectID): Promise<boolean>

ProcessService

+delete(id: ObjectID): Promise<boolean>

OrderService

+delete(id: ObjectID): Promise<boolean>

SimulationActivityService

LocationService

ProductService

OrderPositionService

ProcessActivityService

EnvironmentService

ProductController

ProcessActivityController

OrderPositionController

OrderContoller

LocationController

EnvironmentController

ProcessController

«Interface»
IResourceController

getAll(request: Request, response: Reponse): void
getById(request: Request, response: Reponse): void
store(request: Request, response: Reponse): void
update(request: Request, response: Reponse): void
delete(request: Request, response: Reponse): void

{abastract}
GenericResourceController<T>

#service: IResourceService<T>

+getAll(request: Request, response: Reponse): void
+getById(request: Request, response: Reponse): void
+store(request: Request, response: Reponse): void
+update(request: Request, response: Reponse): void
+delete(request: Request, response: Reponse): void

PersistentModel

-_id: ObjectID
-createdAt: Date

{abstract}
GenericResourceService<T extends object>

#model: Model<Document>

+getAll(criteria?: object): Promise<T[]>
+getById(id: ObjectID): Promise<T>
+store(object: T): Promise<T>
+update(id: ObjectID, changes: object): Promise<T>
+delete(id): Promise<boolean>

«Interface»
IResourceService<T>

getAll(criteria?: object): Promise<T[]>
getById(id: ObjectID): Promise<T>
store(object: T): Promise<T>
update(id: ObjectID, changes: object): Promise<T>
delete(id): Promise<boolean>

1

*

1* 1

*

1
*

1
*

1

1

1
*

1
*

1
*

Figure 33: Class Diagram: Software design

F. Research on Warehouse Management Systems 70

F Research on Warehouse Management Systems

F.1 Purpose of Research

The demo facility will consist of a hardware and software part. For the software part a
solution has to be found that is capable of fulfilling the specified requirements und use
cases and in its nature acting similarly to a warehouse management system.

This research is aimed to find such an existing software solution that can be used alongside
the demo facility.

F.2 Research Method

The research is based on the weighted scoring method. For this method multiple criteria for
the software solution will be derived from the SRS. Each of these criteria is then assigned
with a certain weight that represents the priority of the criterion. Then for each candidate
the different criteria is evaluated and assigned with a score between 0 and a maximum of 3
points.

F.2.1 Weight

In the beginning each criterion is assigned with a weight between 1 and 3, where 3 represents
a high importance. To differentiate even more between the highly important criteria, each
of these criteria is again assigned with a weight of 1 to 3. For the final weight the two scores
of the criteria with initially high weights are multiplied. With this approach each criterion
can have a weight between 1 and 9, where 1, 2, 3, 6 and 9 are possible values.

Weight 1: Low priority

Weight 2: Medium priority

Weight 3: High priority

Weight 6: Very high priority

Weight 9: Very, very high priority

F.2.2 Scoring

To calculate the final score of each candidate, the weight has to be multiplied with a specific
value the candidate scores within a specific criterion. Therefore, the candidate can score 0
to 3 points for each criterion. In case the criterion is ”yes/no”, no scores 0 points and yes 3
points to make the end result more comparable.

F. Research on Warehouse Management Systems 71

F.3 Criteria

Based on the requirements (see xyz) and the use cases (see xyz) certain criteria are derived
against the different software solutions are assessed. Each criterion has a specific weight
that represents each criteria’s importance and a score from 0-3 which represents how well
the software solution performs in the criterion. Below each criterion is described, the source
from where the criteria was derived is given and the weight and possible scores are defined.

F.3.1 Offline usage

The software solution must be fully useable for the purpose of the demo facility without
requiring an internet connection while use. It does not matter whether the software needs
internet connection for initial setup. This criterion is specified in the SRS as DC-1.

As this criterion is very important it is considered as a KO criterion and therefore only used
to filter candidates of the research. In the final assessment among the candidates, this crite-
rion is considered as given as other candidates were filtered out regarding this criterion.

F.3.2 Price

The software solution must be available for free. No initial costs or recurring costs are al-
lowed. This criterion was defined in consultation with the customer as budget is only avail-
able for the hardware part of the demo facility.

This criterion is as highly important as the offline usage capability and is therefore consid-
ered as a KO criterion for filtering suitable candidates.

F.3.3 Process activity support

The software solution must at least support the order picking and warehousing process ei-
ther by already implementing these processes out of the box as defined by the LOGwear
project or by providing a way to implement those processes or modifying those processes.
This criterion was derived from FR-1 and in consultation with the customer who defined the
importance of various processes.

The weight of this criterion is very high as it represents the basic functionality of the system
and has a weight of 9.

F. Research on Warehouse Management Systems 72

F.3.3.1 Scoring

0 Points: No process is implemented out of the box and no way to implement these
processes.

1 Point: One process or both processes are (partly) implemented but there is no
way to implement the other process or improve/modify the existing pro-
cesses.

2 Points: 1. Both processes are partly implemented, and processes can be modi-
fied/implemented.

2. The system provides a way to implement processes.
3. Both processes are fully implemented but the software does not pro-

vide a way to modify/implement processes.

3 Points: Both processes are fully implemented, and the software provides a way to
implement/modify processes.

F.3.4 Input/Output matching

The software solution is going to be used at warehouses of potential customers. Therefore,
the software solution must provide a way to adjust the data in the system to represent the
data of the customer. As this is one of the main purposes of the demo facility, this criterion
has a weight of 9. This criterion is derived from FR-12 of the SRS.

F.3.4.1 Scoring

0 Points: Data cannot be adjusted to represent the customer’s data or the duration
of the task to do so is expected to take longer than 8 hours.

1 Point: Data can be adjusted to represent the customer’s data. The duration of
this task is expected to take shorter than 8 hours.

2 Point: Data can be adjusted to represent the customer’s data. The duration of
this task is expected to take shorter than 4 hours.

3 Points: Data can be adjusted to represent the customer’s data. The duration of
this task is expected to take shorter than 1 hour.

F.3.5 Extendable

The software solution must provide a way to connect external applications on the wearables
to the system. Therefore, it should either provide an API which allows interaction with the

F. Research on Warehouse Management Systems 73

implemented processes and data and/or some kind of SDK which allows direct modifica-
tions to the system to make the connection possible.

This criterion is crucial for connecting a wide range of different wearables to the system and
so has a high weight of 6. This criterion is derived from FR-3 of the SRS.

F.3.5.1 Scoring

0 Points: The software neither provides an API nor an SDK.

1 Point: The software either provides an API or an SDK.

2 Points: The software provides an API and SDK.

3 Points: The software provides an API and SDK and documentation is consider-
ably good.

F.3.6 Simplicity of usage

The system is going to be used in session of a maximum length of a few hours and so needs
to be simple to use. As simplicity is crucial for a good presentation of the wearables, this
criterion has a high weight of 6. This criterion is derived from MR-3 and MR-4 of the SRS.

F.3.6.1 Scoring

0 Points: The system needs extensive training (1 day and more) until an end user
can do basics.

1 Point: The system needs some training (1 hour and more) until an end user can
do basics.

2 Points: The system needs little training (30 minutes and more) until an end user
can do basics.

3 Points: The system is self-explanatory or requires very little training (0-30 min-
utes) until an end user can do basics.

F.3.7 Setup

The setup criterion splits into the effort required for the initial setup of the system and the
effort of the recurring startup setup for regular use of the demo facility. While a moderate
effort for the initial setup is acceptable, the usual startup setup for the demo facility needs
to be short. This criterion has a weight of 3. This criterion is derived from MR-1 and MR-2
of the SRS.

F. Research on Warehouse Management Systems 74

F.3.7.1 Scoring

0 Points: The initial setup takes more than one week, and/or the recurring setup
takes more than 30 minutes.

1 Point: The initial setup takes less than one week, and the recurring setup takes
less than 30 minutes.

2 Points: The initial setup takes less than one week, and the recurring setup takes
less than 15 minutes.

3 Points: The initial setup takes less than two days and the recurring setup takes
less than 15 minutes.

F.3.8 Platform support

The software solution has to support one of the operating systems that can run natively on
an iMac Pro or MacBook Pro, namely macOS and Windows. Support for Linux is considered
as a plus. This criterion is derived from DC-3 to DC-8 of the SRS. This criterion has a weight
of 3.

F.3.8.1 Scoring

0 Points: Runs neither on macOS nor Windows.

1 Point: Runs either on macOS or Windows.

2 Points: Runs on macOS and Windows.

3 Points: Runs on macOS, Windows and Linux.

F.3.9 Multiple clients

The software solution should be able to serve multiple clients, so it is possible to use the
same data and process implementation running on a backend at multiple workstations.

This feature is nice-to-have but not required and has a weight of 1. This criterion is derived
from DC-2 and DC-9.4 of the SRS.

0 Points: Does not support multiple clients.

3 Points: Supports multiple clients.

F. Research on Warehouse Management Systems 75

F.4 Candidates

F.4.1 Selection of candidates

Due to time constraints the period for selection of candidates only lasted two days on Octo-
ber 8 and 9. Sources for the candidates were the book ”Warehouse Management: Automation
and Organisation of Warehouse and Order Picking Systems” by M. Hompel and T. Schmidt
(2007), the Warehouse Management System list of Software Advice 3 and of ExplorWMS 4.

Apart from these candidates also the KLG Pilot was taken into consideration as it already
provides a WMS-like system.

F.4.2 Long list

The following list of candidates were selected. Each candidate is assessed against the two
KO criteria price and offline-capability as described in the upper section. If a KO criterion
is applied to the candidate, the right column shows which one applied.

Name Website KO

Apache OFBiz https://ofbiz.apache.org -

OpenBoxes https://openboxes.com -

Odoo https://odoo.com Price5

xTuple https://xtuple.com Price6

myWMS LOS https://mywms.org Price7

Delivrd https://delivrd.com Price8

Metasfresh https://metasfresh.com -

Finale Inventory https://finaleinventory.com Price

Flowtrac https://flowtrac.com Price

Sweet https://getsweet.co Price

VIN eRetail http://vinculumgroup.com Price

ZOHO Inventory https://zoho.eu Price

Clarus WMS https://www.claruswms.co.uk Price

Continued on next page
3https://www.softwareadvice.com/scm/warehouse-management-system-comparison/
4https://www.explorewms.com/open-source-wms-buyers-guide.html
5WMS functionality requires non-free addons
6WMS functionality requires non-free license
7Commercial use requires a non-free license
8Free version too limited

F. Research on Warehouse Management Systems 76

Name Website KO

WAMA https://www.wama.cloud Offline usuable

Latitude WMS https://pathguide.com Price

Logiwa WMS https://www.logiwa.com Price

Carton Cloud https://cartoncloud.com Price, Offine ususable

ProVision http://provisionwms.com Price

Optimiser WMS http://www.optima-ws.co.uk Price

Inventory Pro http://cissltd.com Price

Logimax http://e-logimax.com Price

ShipEdge https://shipedge.com Price, Offline usuable

Raptool https://raptool.com Price, Offline usuable

StockOne https://stockone.in Price

Veeqo https://veeqo.com Price

Nuclos http://nuclos.de -

KLG Demo https://logwear.eu Offline usuable

Table 14: Research candidates (longlist)

F.4.3 Short list

After applying the KO criteria to each candidate (also refer to table 14) the following candi-
dates will be further assessed.

Name Website KO

Apache OFBiz https://ofbiz.apache.org -

OpenBoxes https://openboxes.com -

Metasfresh https://metasfresh.com -

Nuclos http://nuclos.de -

Table 15: Research candidates (shortlist)

F. Research on Warehouse Management Systems 77

F.5 Assessment

In the following section the remaining candidates (refer to table 15) are assessed against
the criteria gathered in section F.3. The KO criteria are left out in this section as they were
already applied to come up with the shortlist of candidates.

F.5.1 Apache OFBiz

F.5.1.1 Process activity support

Apache OFBiz has basic support for the picking process in terms of providing a pick list and
support receiving of items. (OFBiz Features, 2016) Modifying these processes is intended by
the project. So OFBiz scores 1 point for this criterion.

F.5.1.2 Input/Output matching

OFBiz supports stock management with custom items and defining a custom warehouse-
/inventory structure. So the data of the system can be adjusted to match the environment
of the customer. (OFBiz Features, 2016). According to the demo environment provided by
OFBiz this tasks seems to be complex and time consuming. So OFBiz scores 0 points for this
criterion.

F.5.1.3 Extendable

Apache OFBiz does not provide an SDK nor an API. So it scores 0 points for this criterion.

F.5.1.4 Simplicity of usage

Apache OFBiz offers a lot of features and is not just intended as a Warehouse Management
System. (OFBiz Features, 2016) According to the demo environment the system seems to be
very complex. So Apache OFBiz scores 0 points for this criterion.

F.5.1.5 Setup

OFBiz provides prebuild releases that can be installed on every computer running the Java
Runtime Engine. (Jones et al., 2018) So the initial setup is done in a few hours. Once installed
the software can be used without further setup. So OFBiz scores 3 points for this criteria.

F. Research on Warehouse Management Systems 78

F.5.1.6 Platform support

OFBiz is Java-based and runs on Windows, macOS and Linux. (Jones et al., 2018) So it scores
3 points.

F.5.1.7 Multiple clients

OFBiz uses a web frontend sending requests to a backend.(Jones et al., 2018) So multiple
clients are supported. OFBiz scores 3 points.

F.5.2 OpenBoxes

F.5.2.1 Process activity support

OpenBoxes provides basic support for order picking in terms of providing a pick list and
the warehousing process. (Features, n.d.) There is no information available regarding the
possibility of modifying or adding processes to the system. So OpenBoxes scores 1 point for
this criterion.

F.5.2.2 Input/Output matching

Stock items and warehouse locations can be specified (Features, n.d.) but as OpenBoxes is
designed for electronic items (About, n.d.) there might be some limitations or difficulties
that an be time consuming. So OpenBoxes scores 1 points for this criterion.

F.5.2.3 Extendable

OpenBoxes provides an RESTful API. (REST API Guide, n.d.). So it scores 1 point.

F.5.2.4 Simplicity of usage

OpenBoxes is focused on Inventory Management (OFBiz Features, 2016) and is limited in
terms of features. So the expected training duration is less than 30 minutes for basic han-
dling. So OpenBoxes scores 2 points for this criterion.

F.5.2.5 Setup

OpenBoxes only provides an installation guide for an outdated version of Ubuntu (Instal-
lation, n.d.). So the initial setup is expected to take more than two days. The recurring

F. Research on Warehouse Management Systems 79

setup is expected to take less than 15 minutes as once installed no further setup seems to be
required. So OpenBoxes scores 2 points for this criterion.

F.5.2.6 Platform support

OpenBoxes only provides an installation guide for Ubuntu. (Installation, n.d.) macOS and
Windows seem to be supported but there is not official guide. So OpenBoxes is limited to
scoring 1 point for this criterion.

F.5.2.7 Multiple clients

OpenBoxes uses a web frontend that sends requests to a backend. So multiple clients are
supported and it scores 3 points for this criterion.

F.5.3 Metasfresh

F.5.3.1 Process activity support

Metasfresh supports the order picking and warehousing process. The processes are modifi-
able inside limited boundaries. (Produkt Highlights, n.d.) So Metasfresh scores 2 points for
this criterion.

F.5.3.2 Input/Output matching

Items, warehouse location etc. can be changed to represent customer’s data. (WebUI Howtos
and Tutorials, n.d.) As the system offers a lot of features and seems to be rather complex, the
duration of this task is expected to take more than 8 hours. So Metasfresh scores 0 points
for this criterion.

F.5.3.3 Extendable

Metasfresh provides a RESTful API (Setup Authorization Token for accessing REST API, n.d.)
and so scores 1 point for this criterion.

F.5.3.4 Simplicity of usage

Due to the number of features and the broad scope of the software, Metasfresh is expected
to be rather complex and getting used to it will probably take some hours of training. So
Metasfresh scores 1 point for this criterion.

F. Research on Warehouse Management Systems 80

F.5.3.5 Setup

Metasfresh provides docker images for the various modules of the software and a setup
guide. (How to set up the metasfresh stack using Docker?, n.d.) Initial setup so probably takes
only a few minutes and the recurring setup only a few seconds. So Metasfresh scores 3
points for this criterion.

F.5.3.6 Platform support

As Metasfresh provides a docker setup it can run on Windows, macOS and Linux. So it
scores 3 points for this criterion.

F.5.3.7 Multiple clients

Metasfresh provides a web frontend that connects to a backend. So it can serve multiple
clients and scores 3 points for this criterion.

F.5.4 Nuclos

F.5.4.1 Process activity support

Nuclos has no processes implemented out of the box, but provides tools to implement them.
(Statusmodell, n.d.) So Nuclos scores 2 points for this criterion.

F.5.4.2 Input/Output matching

As Nuclos is a toolbox for developing an ERP-like system there are no restrictions regarding
data structure and data. However, implementing these data structures seems to be a time-
consuming task. (Businessobjekt, n.d.; Statusmodell, n.d.) So Nuclos scores 0 points for this
criterion.

F.5.4.3 Extendable

Nuclos provides an SDK and RESTful API. However, documentation seems to be very lim-
ited. So it scores 2 points for this criterion.

F. Research on Warehouse Management Systems 81

F.5.4.4 Simplicity of usage

As Nuclos is only a toolbox for creating a system, the simplicity of usage depends on how
the system is developed on top of Nuclos. So no reliable score can be given. So Nuclos scores
0 points for this criterion.

F.5.4.5 Setup

Nuclos provides a Java-based installer for Windows, macOS and Linux. So initial setup
probably takes only a few minutes. Once installed, no recurring setup seems to be required.
So Nuclos scores 3 Points for this criterion.

F.5.4.6 Platform support

Nuclos is Java-based and runs on Windows, macOS and Linux. So it scores 3 Points for this
criterion.

F.5.4.7 Multiple clients

Nuclos has a backend client archtitectures and so supports multiple clients. So Nuclos scores
3 points.

F. Research on Warehouse Management Systems 82

F.6 Result

F.6.1 Overview

Candidate/
Criteria

Weight Max.
Score

OFBiz OpenBoxes Metasfresh Nuclos

Processes 9 3 9 9 18 18

I/O 9 3 0 9 0 0

Extendable 6 3 0 6 6 12

Simplicity 6 3 0 12 6 0

Setup 3 3 3 6 9 9

Platforms 3 3 3 3 9 9

Clients 1 3 3 3 3 3

Overall 30 48 51 51

Table 16: Research result

F.6.2 Conclusion

The research result (refer to table 16) shows that three of the candidates score either equally
or almost equally and Apache OFBiz follows with a big margin. So OFBiz is no taken into
consideration for further discussion of the results.

However, if you look closely, the three remaining candidates also score quite low points as
they not even reach half of the possible 111 points. Especially taking into account the most
important criteria Process/activity support and Input/Output matching none of the WMS
in the comparison can score more than 9 of 27 points in average with Metasfresh and Nuclos
even scoring 0 points in Input/Output matching.

Comparing the WMS with a self-made solution that is directly designed for the purpose
of the Demo Facility, the required effort for a self-made solution seems to be lower than
customizing one of the existing solutions. Especially in terms of the Process/Activity sup-
port and the Input/Output matching a custom-made software solution would be better as
it would be designed to define own processes with custom data. Also in terms of being ex-
tendible a custom made solution is better as all design-related documentation including all
source codes would be available. Also an external API can be fully documented to make it
easy to use for other applications.

F. Research on Warehouse Management Systems 83

	Information page
	Abstract
	Statement of Authorship
	List of figures
	List of tables
	Abbreviations
	Glossary
	Introduction
	The LOGwear project
	Problem Description
	Document structure

	Project Description
	Assignment
	Project scope
	Project phases and deliverables
	Project management
	Quality assurance
	Stakeholder
	Time planning
	Risk analysis

	Analysis
	Usage scenarios
	Wearables Requirements
	Software Requirements Specification
	Use Cases
	Mockups
	Logistics processes

	Research
	Research setup
	Research result

	Design
	Hardware Selection
	Architecture and Technology
	RESTful API design
	Basic software design
	Simulation logic
	Deployment

	Implementation
	Basic Software Design
	Simulation
	Deployment
	Connecting the Demo Facility and Wearables

	Conclusion
	Use Cases
	Software Requirements Specifications
	Mockups
	Logistics Processes
	Software Design
	Research on Warehouse Management Systems
	Purpose of Research
	Research Method
	Criteria
	Candidates
	Assessment
	Result

